
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1840517/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Thermal Analysis of a Transcutaneous Energy Transfer System for a Left Ventricular Assist Device. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2022, 6, 253-259.	3.4	1
2	Electromagnetic Interference in a Buried Multiconductor Cable Due to a Dynamic Wireless Power Transfer System. Energies, 2022, 15, 1645.	3.1	0
3	Innovative Wireless Charging System for Implantable Capsule Robots. IEEE Transactions on Electromagnetic Compatibility, 2021, 63, 1726-1734.	2.2	8
4	Uninterruptable Transcutaneous Wireless Power Supply for an LVAD: Experimental Validation and EMF Safety Analysis. IEEE Transactions on Electromagnetic Compatibility, 2021, 63, 1717-1725.	2.2	2
5	Coil Design of a Wireless Power-Transfer Receiver Integrated into a Left Ventricular Assist Device. Electronics (Switzerland), 2021, 10, 874.	3.1	7
6	Wireless Power Supply System for Left Ventricular Assist Device and Implanted Cardiac Defibrillator. , 2021, , .		3
7	EMI in a Cardiac Implantable Electronic Device (CIED) by the Wireless Powering of a Left Ventricular Assist Device (LVAD). IEEE Transactions on Electromagnetic Compatibility, 2021, 63, 988-995.	2.2	18
8	Analysis of Compensation Networks for a Transcutaneous WPT System to Achieve Compliance with ICNIRP Basic Restrictions. , 2021, , .		3
9	Centralized High Power Supply System for Implanted Medical Devices Using Wireless Power Transfer Technology. IEEE Transactions on Medical Robotics and Bionics, 2021, 3, 992-1001.	3.2	16
10	Dynamic Wireless Power Transfer in Urban Area: EMI on Traffic Signal Cables. , 2021, , .		1
11	Two-Coil Receiver for Electrical Vehicles in Dynamic Wireless Power Transfer. Energies, 2021, 14, 7790.	3.1	7
12	Efficient Wireless Drone Charging Pad for Any Landing Position and Orientation. Energies, 2021, 14, 8188.	3.1	7
13	Active Shielding Design for a Dynamic Wireless Power Transfer System. , 2020, , .		1
14	Research on Return Traction Current Harmonics. , 2020, , .		4
15	Active Shielding Design and Optimization of a Wireless Power Transfer (WPT) System for Automotive. Energies, 2020, 13, 5575.	3.1	12
16	Magnetic Field Mitigation by Multicoil Active Shielding in Electric Vehicles Equipped With Wireless Power Charging System. IEEE Transactions on Electromagnetic Compatibility, 2020, 62, 1398-1405.	2.2	29
17	Active Shielding Applied to an Electrified Road in a Dynamic Wireless Power Transfer (WPT) System. Energies, 2020, 13, 2522.	3.1	13
18	Wireless Powering of Next-Generation Left Ventricular Assist Devices (LVADs) Without Percutaneous Cable Driveline. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 3969-3977.	4.6	14

#	Article	IF	CITATIONS
19	Finite-Element Modeling of Conductive Multilayer Shields by Artificial Material Single-Layer Method. IEEE Transactions on Magnetics, 2020, 56, 1-4.	2.1	9
20	Percutaneous Wireless Powering System for a Left Ventricular Assist Device (LVAD) with an Internal Backup Battery. , 2020, , .		0
21	Near Field Wireless Powering of Deep Medical Implants. Energies, 2019, 12, 2720.	3.1	34
22	Wireless Charging of Electric Vehicles: Planar Secondary Coil Position vs. Magnetic Field. , 2019, , .		3
23	Active Coil System for Magnetic Field Reduction in an Automotive Wireless Power Transfer System. , 2019, , .		19
24	Innovative Design of Drone Landing Gear Used as a Receiving Coil in Wireless Charging Application. Energies, 2019, 12, 3483.	3.1	21
25	Magnetic Field during Wireless Charging in an Electric Vehicle According to Standard SAE J2954. Energies, 2019, 12, 1795.	3.1	55
26	Pacemaker Lead Coupling With an Automotive Wireless Power Transfer System. IEEE Transactions on Electromagnetic Compatibility, 2019, 61, 1935-1943.	2.2	9
27	Wireless Charging in Electric Vehicles: EMI/EMC Risk Mitigation in Pacemakers by Active Coils. , 2019, , .		10
28	Feasibility Study of a Wireless Power Transfer System Applied to a Left Ventricular Assist Device. , 2019, , .		8
29	Active Shielding Design for Wireless Power Transfer Systems. IEEE Transactions on Electromagnetic Compatibility, 2019, 61, 1953-1960.	2.2	52
30	Propagation of Harmonics of Return Traction Current in Rail lines. , 2019, , .		5
31	Wireless Charging System Integrated in a Small Unmanned Aerial Vehicle (UAV) with High Tolerance to Planar Coil Misalignment. , 2019, , .		20
32	Artificial Material Single Layer to Model the Field Penetration Through Thin Shields in Finite-Elements Analysis. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 56-63.	4.6	15
33	Wireless power transfer (WPT) system for an electric vehicle (EV): how to shield the car from the magnetic field generated by two planar coils. Wireless Power Transfer, 2018, 5, 1-8.	1.1	14
34	Numerical Analysis Applying the AMSL Method to Predict the Magnetic Field in an EV with a WPT System. , 2018, , .		3
35	Feasibility Study of a Wireless Power Transfer System Applied to a Leadless Pacemaker. , 2018, , .		5
36	Progress in the Application of the Transmission Line Theory to Near-Field Shielding. , 2018, , .		0

#	Article	IF	CITATIONS
37	University Engineering Course on EMF Safety. , 2018, , .		Ο
38	Application of the artificial material single layer (AMSL) method to assess the magnetic field generated by a WPT system with shield. , 2018, , .		1
39	About Electromagnetic Compatibility of Track Circuits with the Traction Supply System of Railway. , 2018, , .		15
40	Wireless Power Transfer Technology Applied to an Autonomous Electric UAV with a Small Secondary Coil. Energies, 2018, 11, 352.	3.1	91
41	Artificial Material Single-Layer Method Applied to Model the Electromagnetic Field Propagation Through Anisotropic Shields. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 3756-3763.	4.6	7
42	Numerical Calculation of the Near Field Shielding for Carbon Fiber Reinforced Polymer (CFRP) Panels at Wireless Power Transfer Automotive Frequencies. , 2018, , .		3
43	Assessment of the Induced Electric Fields in a Carbon-Fiber Electrical Vehicle Equipped with a Wireless Power Transfer System. Energies, 2018, 11, 684.	3.1	35
44	Conductive Layer Modeling by Improved Second-Order Artificial Material Single-Layer Method. IEEE Transactions on Antennas and Propagation, 2018, 66, 5646-5650.	5.1	9
45	Derivation of Coupling Factors for Different Wireless Power Transfer Systems: Inter- and Intralaboratory Comparison. IEEE Transactions on Electromagnetic Compatibility, 2017, 59, 677-685.	2.2	27
46	Near-Field Reduction in a Wireless Power Transfer System Using LCC Compensation. IEEE Transactions on Electromagnetic Compatibility, 2017, 59, 686-694.	2.2	94
47	Induced Effects in a Pacemaker Equipped With a Wireless Power Transfer Charging System. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	17
48	The role of the skin modeling in LF dosimetry. , 2017, , .		0
49	Modelling of induced electric fields based on incompletely known magnetic fields. Physics in Medicine and Biology, 2017, 62, 6567-6578.	3.0	9
50	Numerical characterization of the magnetic field in electric vehicles equipped with a WPT system. Wireless Power Transfer, 2017, 4, 78-87.	1.1	19
51	EMC and EMF safety issues in wireless charging system for an electric vehicle (EV). , 2017, , .		26
52	Magnetic field behavior in a carbon-fiber electrical vehicle charged by a wireless power transfer system. , 2017, , .		3
53	High efficiency and lightweight wireless charging system for drone batteries. , 2017, , .		44
54	Conducted emission of wireless power transfer charging system in electric vehicle. , 2017, , .		7

4

#	Article	IF	CITATIONS
55	Magnetic field generated by a 22 kW-85 kHz wireless power transfer system for an EV. , 2017, , .		6
56	NEAR FIELD SHIELDING OF A WIRELESS POWER TRANSFER (WPT) CURRENT COIL. Progress in Electromagnetics Research C, 2017, 77, 39-48.	0.9	16
57	Novel sensor concepts for the compliance with the EMF directive 2013/35/EU. , 2016, , .		0
58	Induced effects in a pacemaker equipped with wireless power transfer charging system. , 2016, , .		2
59	Coil design of a wireless power transfer charging system for a drone. , 2016, , .		17
60	Parametric analysis of load variation in WPT systems applied to AIMDs. , 2016, , .		2
61	A novel homogenization procedure to model the skin layers in LF numerical dosimetry. Physics in Medicine and Biology, 2016, 61, 4402-4411.	3.0	7
62	Magnetic field levels in drones equipped with Wireless Power Transfer technology. , 2016, , .		48
63	Immunity of a pacemaker with a Wireless Power Transfer coil. , 2016, , .		1
64	EMF Safety and Thermal Aspects in a Pacemaker Equipped With a Wireless Power Transfer System Working at Low Frequency. IEEE Transactions on Microwave Theory and Techniques, 2016, , 1-8.	4.6	78
65	Wireless Power Transfer Charging System for AIMDs and Pacemakers. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 633-642.	4.6	192
66	Quasistatic Approximation for Exposure Assessment of Wireless Power Transfer. IEICE Transactions on Communications, 2015, E98.B, 1156-1163.	0.7	10
67	Experimental Characterization of Electromagnetic Propagation Under Rubble of a Historic Town After Disaster. IEEE Transactions on Vehicular Technology, 2015, 64, 2288-2296.	6.3	18
68	UWB Source Localization by Using the Pseudospectral Time-Domain Time-Reversal Method in Biological Tissues. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	4
69	Robust LCC compensation in wireless power transfer with variable coupling factor due to coil misalignment. , 2015, , .		29
70	Prediction of shielding effectiveness in graphene enclosures by FEM-INBC method. , 2015, , .		7
71	A numerical dosimetry study of a wearable RFID reader antenna for navy personnel localization. , 2015, , .		1
72	Numerical analysis of EMF safety and thermal aspects in a pacemaker with a Wireless Power Transfer system. , 2015, , .		16

#	Article	IF	CITATIONS
73	Optimum coil configuration of wireless power transfer system in presence of shields. , 2015, , .		17
74	Numerical simulation of Wireless Power Transfer system to recharge the battery of an implanted cardiac pacemaker. , 2014, , .		21
75	Circuit-Oriented Solution of Drude Dispersion Relations by the \${m FD}^{2}{m TD}\$ Method. IEEE Transactions on Magnetics, 2014, 50, 425-428.	2.1	1
76	Wireless power transfer system applied to an active implantable medical device. , 2014, , .		23
77	Circuit-Oriented FEM Modeling of Finite Extension Graphene Sheet by Impedance Network Boundary Conditions (INBCs). IEEE Transactions on Terahertz Science and Technology, 2014, 4, 734-740.	3.1	17
78	Assessment of magnetic field levels generated by a wireless power transfer (WPT) system at 20 kHz. , 2013, , .		9
79	Localization of radio emitters into collapsed buildings after earthquake: Measurements of path loss and direction of arrival. , 2012, , .		4
80	EMC Europe 2012 Rome Report. IEEE Electromagnetic Compatibility Magazine, 2012, 1, 82-84.	0.1	0
81	Antenna design of a UHF RFID tag for human tracking avoiding spurious emission. , 2012, , .		8
82	FDTD Modeling of Impedance Boundary Conditions by Equivalent LTI Circuits. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 3656-3666.	4.6	15
83	Cole-Cole vs Debye models for the assessment of electromagnetic fields inside biological tissues produced by wideband EMF sources. , 2012, , .		14
84	Localization of UWB transmitters inside buildings and disaster rubble: A numerical investigation. , 2012, , .		1
85	FD2TD ANALYSIS OF ELECTROMAGNETIC FIELD PROPAGATION IN MULTIPOLE DEBYE MEDIA WITH AND WITHOUT CONVOLUTION. Progress in Electromagnetics Research B, 2012, 42, 181-205.	1.0	8
86	Subcell FDTD Modeling of Field Penetration Through Lossy Shields. IEEE Transactions on Electromagnetic Compatibility, 2012, 54, 299-307.	2.2	30
87	Equivalent Circuit Modeling of Frequency-Selective Surfaces Based on Nanostructured Transparent Thin Films. IEEE Transactions on Magnetics, 2012, 48, 703-706.	2.1	28
88	Efficient Low Order Approximation for Surface Impedance Boundary Conditions in Finite-Difference Time-Domain Method. IEEE Transactions on Magnetics, 2012, 48, 271-274.	2.1	11
89	Numerical simulation of blood vascularization influence in microwave ablation. , 2011, , .		1
90	Assessment of Human Body Impedance for Safety Requirements Against Contact Currents for Frequencies up to 110 MHz. IEEE Transactions on Biomedical Engineering, 2011, 58, 390-396.	4.2	38

#	Article	IF	CITATIONS
91	Magnetic Shielding of Apertures Loaded by Resistive Coating. IEEE Transactions on Magnetics, 2010, 46, 3341-3344.	2.1	10
92	Safety Assessment of UWB Radio Systems for Body Area Network by the \${m FD}^{2}{m TD}\$ Method. IEEE Transactions on Magnetics, 2010, 46, 3245-3248.	2.1	29
93	Fast prediction of the electromagnetic shielding of small apertures coated by conductive thin films. , 2010, , .		0
94	Fast calculation of dielectric substrate losses in microwave applications by the FD. , 2010, , .		3
95	Circuit Model of a Receiving Leaky Line Antenna (LLA). IEEE Transactions on Electromagnetic Compatibility, 2009, 51, 852-859.	2.2	3
96	Prototype Design of a Thin-Film Bulk Acoustic-Wave Resonator by the Finite Element Method. IEEE Transactions on Magnetics, 2009, 45, 1116-1119.	2.1	2
97	Finite-Element Analysis of Temperature Increase in Vascularized Biological Tissues Exposed to RF Sources. IEEE Transactions on Magnetics, 2009, 45, 1682-1685.	2.1	3
98	Coexistence Between Ultra-Wideband Radio and Narrow-Band Wireless LAN Communication Systems—Part II: EMI Evaluation. IEEE Transactions on Electromagnetic Compatibility, 2009, 51, 382-390.	2.2	17
99	Coexistence Between Ultra-Wideband Radio and Narrow-Band Wireless LAN Communication Systems—Part I: Modeling and Measurement of UWB Radio Signals in Frequency and Time. IEEE Transactions on Electromagnetic Compatibility, 2009, 51, 372-381.	2.2	15
100	Circuit-based modeling for the shielding effectiveness of apertures coated with conductive thin films. , 2009, , .		4
101	Optimal design of multifunctional transparent shields against radio frequency electromagnetic fields. , 2009, , .		4
102	Impact of UHF RFID IC impedance on the RFID system performances in presence of dielectric materials. , 2008, , .		8
103	EMF Exposure: A Numerical Model to Predict the Temperature Increase in Biological Vascularized Tissues. , 2008, , .		2
104	Effects of thermoregulatory mechanisms on the eye thermal elevation produced by intense RF exposures. , 2008, , .		2
105	Hybrid finite element/finite difference (FE/FD) model to analyze thermal transients in biological vascularized tissues. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2008, 27, 1307-1318.	0.9	2
106	Revealing system of GSM mobile phone operations aboard aircraft. , 2008, , .		1
107	Finite element modelling of a thinâ€film bulk acoustic resonator (FBAR). COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2008, 27, 1296-1306.	0.9	9

Simulation of an Indoor Power Cable Network for PLC Applications. , 2007, , .

#	Article	IF	CITATIONS
109	Numerical Prediction of SAR and Thermal Elevation in a 0.25-mm 3-D Model of the Human Eye Exposed to Handheld Transmitters. , 2007, , .		11
110	Three-Dimensional FEM Approach to Model Twisted Wire Pair Cables. IEEE Transactions on Magnetics, 2007, 43, 1373-1376.	2.1	15
111	Pulse-Shaping Numerical Procedures for Ultrawide Bandwidth Systems. IEEE Transactions on Magnetics, 2007, 43, 1549-1552.	2.1	1
112	Prediction of Temperature Increase in Human Eyes Due to RF Sources. IEEE Transactions on Electromagnetic Compatibility, 2007, 49, 825-833.	2.2	59
113	Penetration of Ultra-wideband (UWB) Communication Signals Through Walls. , 2007, , 784-795.		0
114	Wavelet denoising approach to extract accurate FDTD solution with coarse discretization in transmission lines. IEEE Transactions on Magnetics, 2005, 41, 1732-1735.	2.1	0
115	Magnetic field computation in a physically large domain with thin metallic shields. IEEE Transactions on Magnetics, 2005, 41, 1708-1711.	2.1	27
116	Circuit modeling of RF capacitive MEMS switch. , 2005, , .		1
117	Detection and Localization of Defects in Shielded Cables by Time-Domain Measurements With UWB Pulse Injection and Clean Algorithm Postprocessing. IEEE Transactions on Electromagnetic Compatibility, 2004, 46, 597-605.	2.2	60
118	Edge-elements modeling of transmission lines in field domain by impedance network boundary conditions. IEEE Transactions on Magnetics, 2003, 39, 1207-1210.	2.1	2
119	Spectral shaping and interference issues in ultra wideband radio systems. , 2003, , .		7
120	Three dimensional magnetic field computation inside a high speed train with a.c. electrification. , 2003, , .		5
121	A hybrid model to compute the effects of a direct lightning stroke on three-dimensional structures. IEEE Transactions on Magnetics, 2003, 39, 1586-1589.	2.1	23
122	EM Field Computations and Measurements. , 2003, , 342-474.		0
123	A Hybrid Numerical Technique to Predict the Electromagnetic Field in Penetrable Conductive Boxes. Electromagnetics, 2002, 22, 405-417.	0.7	3
124	Circuit-oriented FEM: solution of circuit-field coupled problems by circuit equations. IEEE Transactions on Magnetics, 2002, 38, 965-968.	2.1	31
125	Full-wave analysis of shielded cable configurations by the FDTD method. IEEE Transactions on Magnetics, 2002, 38, 761-764.	2.1	28

126 ELF magnetic field mitigation by active shielding. , 2002, , .

21

#	Article	IF	CITATIONS
127	Time-domain prediction of the radiated susceptibility in a shielded cable inside a penetrable shielded box. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2002, 15, 549-561.	1.9	2
128	Lumped circuits coupled with electromagnetic Whitney element models. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2000, 13, 139-146.	1.9	4
129	FEM solution of time-harmonic electromagnetic fields by an equivalent electrical network. IEEE Transactions on Magnetics, 2000, 36, 938-941.	2.1	13
130	Finite-difference time-domain modeling of thin shields. IEEE Transactions on Magnetics, 2000, 36, 848-851.	2.1	11
131	Modeling of electromagnetic fields and electrical circuits with lumped and distributed elements by the WETD method. IEEE Transactions on Magnetics, 1999, 35, 1666-1669.	2.1	39
132	Time-domain FEM analysis of quasi-static magnetic fields around nonperfectly conductive shields. IEEE Transactions on Magnetics, 1999, 35, 1187-1190.	2.1	20
133	Field analysis of penetrable conductive shields by the finite-difference time-domain method with impedance network boundary conditions (INBCs). IEEE Transactions on Electromagnetic Compatibility, 1999, 41, 307-319.	2.2	59
134	Capacitance matrix calculation of a wire conductor line: a new FEM approach. IEEE Transactions on Electromagnetic Compatibility, 1998, 40, 262-270.	2.2	7
135	Simplified model of the discharge path in electrical devices by an iterative FEM procedure. IEEE Transactions on Magnetics, 1998, 34, 2513-2516.	2.1	1
136	Mixed finite-difference/Whitney-elements time domain (FD/WE-TD) method. IEEE Transactions on Magnetics, 1998, 34, 3222-3227.	2.1	17
137	Fast computation of quasi-static magnetic fields around nonperfectly conductive shields. IEEE Transactions on Magnetics, 1998, 34, 2795-2798.	2.1	38
138	An explicit-implicit solution scheme to analyze fast transients by finite elements. IEEE Transactions on Magnetics, 1997, 33, 1452-1455.	2.1	11
139	Edge element analysis of complex configurations in presence of shields. IEEE Transactions on Magnetics, 1997, 33, 1548-1551.	2.1	37
140	Time-domain solution of field-excited multiconductor transmission line equations. IEEE Transactions on Electromagnetic Compatibility, 1995, 37, 421-432.	2.2	20
141	Hybrid finite element solutions of time dependent Maxwell's curl equations. IEEE Transactions on Magnetics, 1995, 31, 1330-1335.	2.1	29
142	Field-to-wire coupling using the finite element-time domain (FE-TD) method. IEEE Transactions on Magnetics, 1995, 31, 1586-1589.	2.1	6
143	Calculation of ionized fields in DC electrostatic precipitators in the presence of dust and electric wind. IEEE Transactions on Industry Applications, 1995, 31, 1446-1451.	4.9	30
144	Point matched finite element-time domain method using vector elements. IEEE Transactions on Magnetics, 1994, 30, 3184-3187.	2.1	55

#	Article	IF	CITATIONS
145	Transient scattering problems solution by surface equivalent sources. IEEE Transactions on Magnetics, 1994, 30, 3148-3151.	2.1	6
146	Open boundary eddy-current problems using edge elements. IEEE Transactions on Magnetics, 1993, 29, 1499-1503.	2.1	4
147	Time domain finite element simulation of conductive regions. IEEE Transactions on Magnetics, 1993, 29, 1705-1710.	2.1	13
148	Characteristic impedance boundary conditions for the solution of open boundary problems. IEEE Transactions on Magnetics, 1993, 29, 1816-1819.	2.1	3
149	Analysis of fast transient electromagnetic fields: a frequency dependent 2-D procedure. IEEE Transactions on Magnetics, 1992, 28, 1146-1149.	2.1	1
150	Numerical solutions of low-frequency scattering problems. IEEE Transactions on Magnetics, 1992, 28, 1224-1277.	2.1	6
151	Numerical computation of corona space charge and V-I characteristic in DC electrostatic precipitators. IEEE Transactions on Industry Applications, 1991, 27, 147-153.	4.9	38
152	FEM computation of induced effects in multiconductor lines. IEEE Transactions on Magnetics, 1991, 27, 3927-3930.	2.1	3
153	A FEM approach to shielding effectiveness in braided-shield cables. IEEE Transactions on Magnetics, 1990, 26, 929-932.	2.1	6
154	FEM Analysis of Transient Electromagnetic Fields Coupled to Multiconductor lines. , 1990, , .		0
155	A finite element technique for multiconductor cable parameters calculation. IEEE Transactions on Magnetics, 1989, 25, 2986-2988.	2.1	70
156	Electromagnetic Interference from Digital Signal Transmission on Power Line Carrier Channels. IEEE Power Engineering Review, 1989, 9, 48-48.	0.1	7
157	EMP Coupling to Power Lines. Electromagnetics, 1988, 8, 277-292.	0.7	8
158	EMP coupling to coaxial shielded cables. , 0, , .		14
159	Time-Domain Finite Element Simulation of Conductive Regions. , 0, , .		1
160	Characteristic Impedance Boundary Conditions (cibc) for the Solution of Open Boundary Problems. , 0, , .		1
161	FD-TD analysis of nonuniform multiconductor lossy lines. , 0, , .		13
162	On the use of irregular grids in the zeroth-order vector finite element-time domain (VFE-TD) method. , 0, , .		0

#	Article	IF	CITATIONS
163	Layout optimization in nonuniform transmission line configurations to reduce radiated emission and crosstalk. , 0, , .		2
164	Computer application of the EMC course at the University of Rome "La Sapienza". , 0, , .		1
165	Active shielding design for a MV/LV distribution transformer substation. , 0, , .		6
166	Identification and localization of defects in shielded cables by a numerical/experimental procedure. , 0, , .		4
167	Time domain analysis of lossy shielded cables by CAD circuit simulators. , 0, , .		13
168	Prediction of voltage and current propagation in twisted wire pairs (TWPs) by a circuit model. , 0, , .		7
169	Sounding and modelling of the ultra wide-band channel in outdoor scenarios. , 0, , .		10
170	Characterization of the Ultra-Wide Band Channel. , 0, , .		4
171	Pulse Shaping Numerical Procedures for Ultra Wide Bandwidth Systems. , 0, , .		0
172	Three-Dimensional FEM Approach to Model Twisted Wire Pair Cables. , 0, , .		2