Fang Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1840376/publications.pdf

Version: 2024-02-01

28	1,495	17 h-index	35
papers	citations		g-index
37	37 docs citations	37	2059
all docs		times ranked	citing authors

#	Article	lF	CITATIONS
1	Important Role of NO ₃ Radical to Nitrate Formation Aloft in Urban Beijing: Insights from Triple Oxygen Isotopes Measured at the Tower. Environmental Science & Envi	10.0	34
2	Improvement of inorganic aerosol component in PM2.5 by constraining aqueous-phase formation of sulfate in cloud with satellite retrievals: WRF-Chem simulations. Science of the Total Environment, 2022, 804, 150229.	8.0	8
3	Nitrogen isotope characteristics and source apportionment of atmospheric ammonium in urban cities during a haze event in Northern China Plain. Atmospheric Environment, 2022, 269, 118800.	4.1	16
4	Impacts of chemical degradation of levoglucosan on quantifying biomass burning contribution to carbonaceous aerosols: A case study in Northeast China. Science of the Total Environment, 2022, 819, 152007.	8.0	13
5	Light absorption and source apportionment of water soluble humic-like substances (HULIS) in PM2.5 at Nanjing, China. Environmental Research, 2022, 206, 112554.	7.5	12
6	Atmospheric Chemistry of Oxalate: Insight Into the Role of Relative Humidity and Aerosol Acidity From Highâ€Resolution Observation. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	3
7	Decrease of atmospheric black carbon and CO2 concentrations due to COVID-19 lockdown at the Mt. Waliguan WMO/GAW baseline station in China. Environmental Research, 2022, 211, 112984.	7.5	4
8	Source apportionments of atmospheric volatile organic compounds in Nanjing, China during high ozone pollution season. Chemosphere, 2021, 263, 128025.	8.2	57
9	Nitrate aerosol formation and source assessment in winter at different regions in Northeast China. Atmospheric Environment, 2021, 267, 118767.	4.1	13
10	Roles of Sulfur Oxidation Pathways in the Variability in Stable Sulfur Isotopic Composition of Sulfate Aerosols at an Urban Site in Beijing, China. Environmental Science and Technology Letters, 2020, 7, 883-888.	8.7	21
11	Isomerization and Degradation of Levoglucosan via the Photo-Fenton Process: Insights from Aqueous-Phase Experiments and Atmospheric Particulate Matter. Environmental Science & Technology, 2020, 54, 11789-11797.	10.0	7
12	Non-agricultural sources dominate the atmospheric NH3 in Xi'an, a megacity in the semi-arid region of China. Science of the Total Environment, 2020, 722, 137756.	8.0	50
13	Insight into the photochemistry of atmospheric oxalate through hourly measurements in the northern suburbs of Nanjing, China. Science of the Total Environment, 2020, 719, 137416.	8.0	7
14	Stable Sulfur Isotopes Revealed a Major Role of Transition-Metal Ion-Catalyzed SO ₂ Oxidation in Haze Episodes. Environmental Science & Envir	10.0	63
15	Changes of Emission Sources to Nitrate Aerosols in Beijing After the Clean Air Actions: Evidence From Dual Isotope Compositions. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031998.	3.3	41
16	Determination of Stable Nitrogen and Oxygen Isotope Ratios in Atmospheric Aerosol Nitrates. Chinese Journal of Analytical Chemistry, 2019, 47, 907-915.	1.7	11
17	Nitrogen Speciation and Isotopic Composition of Aerosols Collected at Himalayan Forest (3326 m) Tj ETQq1 1 0. 12247-12256.	.784314 rş 10.0	gBT /Overlo <mark>ck</mark> 27
18	Isotope-based source apportionment of nitrogen-containing aerosols: A case study in an industrial city in China. Atmospheric Environment, 2019, 212, 96-105.	4.1	47

#	Article	IF	CITATIONS
19	High Time- and Size-Resolved Measurements of PM and Chemical Composition from Coal Combustion: Implications for the EC Formation Process. Environmental Science & Eamp; Technology, 2018, 52, 6676-6685. Nitrogen isotope fractionation during gas-to-particle conversion of	10.0	55
20	NO _{<i>x</i>} to NO ₃ ^{â^'} in the atmosphere â€" implications for isotope-based NO _{<i>x</i>} source apportionment.	4.9	65
21	Chemical characteristics of dicarboxylic acids and related organic compounds in PM2.5 during biomass-burning and non-biomass-burning seasons at a rural site of Northeast China. Environmental Pollution, 2017, 231, 654-662.	7.5	72
22	High Contribution of Nonfossil Sources to Submicrometer Organic Aerosols in Beijing, China. Environmental Science & Environmen	10.0	58
23	New insights into the sources and formation of carbonaceous aerosols in China: potential applications of dual-carbon isotopes. National Science Review, 2017, 4, 804-806.	9.5	21
24	Stable carbon isotopic compositions of lowâ \in molecularâ \in weight dicarboxylic acids, oxocarboxylic acids, <i>\hat{l}±</i> \hat{l} ± \hat{l} = \hat{l} = \hat{l} = \hat{l} = \hat{l} = \hat{l} = \hat{l} \hat{l} = \hat{l} \hat{l} = \hat{l} \hat{l} = \hat{l} $$	3.3	41
25	Inorganic markers, carbonaceous components and stable carbon isotope from biomass burning aerosols in Northeast China. Science of the Total Environment, 2016, 572, 1244-1251.	8.0	71
26	Fine particulate matter (PM2.5) in China at a city level. Scientific Reports, 2015, 5, 14884.	3.3	595
27	Is it time to tackle PM2.5 air pollutions in China from biomass-burning emissions?. Environmental Pollution, 2015, 202, 217-219.	7.5	65
28	Tightening nonfossil emissions control: A potential opportunity for PM _{2.5} mitigation in China. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1402.	7.1	7