Jialin Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/18402/publications.pdf

Version: 2024-02-01

35 papers	1,562 citations	21 h-index	330143 37 g-index
37	37	37	2323
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Silk Fibroin Biomaterial Shows Safe and Effective Wound Healing in Animal Models and a Randomized Controlled Clinical Trial. Advanced Healthcare Materials, 2017, 6, 1700121.	7.6	173
2	The effect of incorporation of exogenous stromal cell-derived factor-1 alpha within a knitted silk-collagen sponge scaffold on tendon regeneration. Biomaterials, 2010, 31, 7239-7249.	11.4	150
3	The use of type 1 collagen scaffold containing stromal cell-derived factor-1 to create a matrix environment conducive to partial-thickness cartilage defects repair. Biomaterials, 2013, 34, 713-723.	11.4	129
4	Allogenous Tendon Stem/Progenitor Cells in Silk Scaffold for Functional Shoulder Repair. Cell Transplantation, 2012, 21, 943-958.	2.5	119
5	Intra-Articular Injection of Human Meniscus Stem/Progenitor Cells Promotes Meniscus Regeneration and Ameliorates Osteoarthritis Through Stromal Cell-Derived Factor-1/CXCR4-Mediated Homing. Stem Cells Translational Medicine, 2014, 3, 387-394.	3.3	86
6	Long-term effects of knitted silk–collagen sponge scaffold on anterior cruciate ligament reconstruction and osteoarthritis prevention. Biomaterials, 2014, 35, 8154-8163.	11.4	84
7	The promotion of osteochondral repair by combined intra-articular injection of parathyroid hormone-related protein and implantation of a bi-layer collagen-silk scaffold. Biomaterials, 2013, 34, 6046-6057.	11.4	78
8	Ascorbic Acid Promotes the Stemness of Corneal Epithelial Stem/Progenitor Cells and Accelerates Epithelial Wound Healing in the Cornea. Stem Cells Translational Medicine, 2017, 6, 1356-1365.	3.3	53
9	Inhibitory function of parathyroid hormone-related protein on chondrocyte hypertrophy: the implication for articular cartilage repair. Arthritis Research and Therapy, 2012, 14, 221.	3.5	52
10	Osteoarthritis Prevention Through Meniscal Regeneration Induced by Intra-Articular Injection of Meniscus Stem Cells. Stem Cells and Development, 2013, 22, 2071-2082.	2.1	52
11	An all-silk-derived functional nanosphere matrix for sequential biomolecule delivery and in situ osteochondral regeneration. Bioactive Materials, 2020, 5, 832-843.	15.6	48
12	Effects of Zinc, Magnesium, and Iron Ions on Bone Tissue Engineering. ACS Biomaterials Science and Engineering, 2022, 8, 2321-2335.	5.2	47
13	Tannic acid-mediated dual peptide-functionalized scaffolds to direct stem cell behavior and osteochondral regeneration. Chemical Engineering Journal, 2020, 396, 125232.	12.7	43
14	Surface Topography and Mechanical Strain Promote Keratocyte Phenotype and Extracellular Matrix Formation in a Biomimetic 3D Corneal Model. Advanced Healthcare Materials, 2017, 6, 1601238.	7.6	38
15	Ciliary Neurotrophic Factor Promotes the Migration of Corneal Epithelial Stem/progenitor Cells by Up-regulation of MMPs through the Phosphorylation of Akt. Scientific Reports, 2016, 6, 25870.	3.3	35
16	Carbon-Based Nanomaterials for Bone and Cartilage Regeneration: A Review. ACS Biomaterials Science and Engineering, 2021, 7, 4718-4735.	5.2	35
17	Enzymatically crosslinked silk-nanosilicate reinforced hydrogel with dual-lineage bioactivity for osteochondral tissue engineering. Materials Science and Engineering C, 2021, 127, 112215.	7.3	32
18	Characterization and comparison of post-natal rat Achilles tendon-derived stem cells at different development stages. Scientific Reports, 2016, 6, 22946.	3.3	30

#	Article	IF	CITATIONS
19	Sustained Release of TPCAâ€1 from Silk Fibroin Hydrogels Preserves Keratocyte Phenotype and Promotes Corneal Regeneration by Inhibiting Interleukinâ€1 <i>β</i> Signaling. Advanced Healthcare Materials, 2020, 9, e2000591.	7.6	26
20	The Application of Mechanical Stimulations in Tendon Tissue Engineering. Stem Cells International, 2020, 2020, 1-14.	2.5	25
21	Promotion of Hernia Repair with High-Strength, Flexible, and Bioresorbable Silk Fibroin Mesh in a Large Abdominal Hernia Model. ACS Biomaterials Science and Engineering, 2018, 4, 2067-2080.	5.2	24
22	The tenocyte phenotype of human primary tendon cells in vitro is reduced by glucocorticoids. BMC Musculoskeletal Disorders, 2016, 17, 467.	1.9	23
23	Regulation of Keratocyte Phenotype and Cell Behavior by Substrate Stiffness. ACS Biomaterials Science and Engineering, 2020, 6, 5162-5171.	5.2	22
24	Multifunctional polyphenol-based silk hydrogel alleviates oxidative stress and enhances endogenous regeneration of osteochondral defects. Materials Today Bio, 2022, 14, 100251.	5.5	20
25	Mechanical stress potentiates the differentiation of periodontal ligament stem cells into keratocytes. British Journal of Ophthalmology, 2018, 102, 562-569.	3.9	18
26	Cell-Free Biomimetic Scaffold with Cartilage Extracellular Matrix-Like Architectures for <i>In Situ</i> Inductive Regeneration of Osteochondral Defects. ACS Biomaterials Science and Engineering, 2020, 6, 6917-6925.	5.2	18
27	The application of human periodontal ligament stem cells and biomimetic silk scaffold for in situ tendon regeneration. Stem Cell Research and Therapy, 2021, 12, 596.	5.5	18
28	Nanosilicateâ€Reinforced Silk Fibroin Hydrogel for Endogenous Regeneration of Both Cartilage and Subchondral Bone. Advanced Healthcare Materials, 2022, 11, .	7.6	17
29	<i>Fos</i> Promotes Early Stage Teno-Lineage Differentiation of Tendon Stem/Progenitor Cells in Tendon. Stem Cells Translational Medicine, 2017, 6, 2009-2019.	3.3	16
30	Substance P and patterned silk biomaterial stimulate periodontal ligament stem cells to form corneal stroma in a bioengineered three-dimensional model. Stem Cell Research and Therapy, 2017, 8, 260.	5.5	14
31	Regulation of osteogenic differentiation by the pro-inflammatory cytokines IL-1Î ² and TNF-α: current conclusions and controversies. Human Cell, 2022, 35, 957-971.	2.7	11
32	Glutamate signaling through the NMDA receptor reduces the expression of scleraxis in plantaris tendon derived cells. BMC Musculoskeletal Disorders, 2017, 18, 218.	1.9	7
33	Characterization and Comparison of Postnatal Rat Meniscus Stem Cells at Different Developmental Stages. Stem Cells Translational Medicine, 2019, 8, 1318-1329.	3.3	7
34	Tendinosis-like changes in denervated rat Achilles tendon. BMC Musculoskeletal Disorders, 2018, 19, 426.	1.9	5
35	Advances in Regulatory Strategies of Differentiating Stem Cells towards Keratocytes. Stem Cells International, 2022, 2022, 1-11.	2.5	1