Maria Mucha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1840157/publications.pdf Version: 2024-02-01

Маріа Мисна

#	Article	IF	CITATIONS
1	Microstructural formation of gypsum by setting in the presence of hydroxypropyl methylcellulose (HPMC). Journal of Thermal Analysis and Calorimetry, 2020, , 1.	2.0	4
2	Influence of Tylose MH1000 Content on Gypsum Thermal Conductivity. Journal of Materials in Civil Engineering, 2018, 30, .	1.3	15
3	Hydroxyethyl methyl cellulose as a modifier of gypsum properties. Journal of Thermal Analysis and Calorimetry, 2018, 134, 1083-1089.	2.0	13
4	The influence of cellulose derivatives on water structure in gypsum. Construction and Building Materials, 2018, 160, 628-638.	3.2	17
5	CHITOSAN/POLY(VINYL ALCOHOL) HYDROGELS AS CONTROLLED DRUG DELIVERY SYSTEMS. Progress on Chemistry and Application of Chitin and Its Derivatives, 2017, XXII, 97-105.	0.1	1
6	CHITOSAN APPLIED FOR GYPSUM MODIFICATION. Progress on Chemistry and Application of Chitin and Its Derivatives, 2017, XXII, 166-175.	0.1	1
7	Hydration kinetics of calcium sulphate hemihydrate modified by water-soluble polymers. International Journal of Engineering Research and Science, 2017, 3, 05-13.	0.2	12
8	Polymer composites based on gypsum matrix. AIP Conference Proceedings, 2016, , .	0.3	7
9	Activation energy of copper-induced thermal degradation of chitosan acetate functional groups. Journal of Polymer Engineering, 2015, 35, 231-239.	0.6	9
10	Crystallization kinetics of polycaprolactone in nanocomposites. Polimery, 2015, 61, 686-692.	0.4	10
11	THERMAL STABILITY OF CHITOSAN NANOCOMPOSITES CONTAINING TIO2 AND ORGANO-MODIFIED MONTMORILLONITE. Progress on Chemistry and Application of Chitin and Its Derivatives, 2015, XX, 122-129.	0.1	4
12	Chitosan scaffolds with nanosilver layer for bone implantation obtained by electrolytic method. Materials Science and Technology, 2014, 30, 582-586.	0.8	2
13	Effect of nanosilver on the photodegradation of poly(lactic acid). Journal of Applied Polymer Science, 2014, 131, .	1.3	25
14	Thermogravimetric and DSC testing of poly(lactic acid) nanocomposites. Thermochimica Acta, 2013, 573, 186-192.	1.2	31
15	Novel Technique of Polymer Composite Preparation for Bone Implants. Advanced Materials Research, 2012, 488-489, 681-685.	0.3	5
16	The release of active substances from selected carbohydrate biopolymer membranes. Carbohydrate Polymers, 2012, 87, 2432-2438.	5.1	12
17	Chitosan scaffolds, films and microgranules for medical application — preparation and drug release studies. Polimery, 2012, 57, 714-721.	0.4	9
18	Biopolymeric matrices based on chitosan for medical applications. E-Polymers, 2011, 11, .	1.3	2

MARIA MUCHA

#	Article	IF	CITATIONS
19	Modeling of water sorption isotherms of chitosan blends. Carbohydrate Polymers, 2010, 79, 34-39.	5.1	24
20	Study of Adsorption and Desorption Heats of Water in Chitosan and its Blends with Hydroxypropylcellulose. Molecular Crystals and Liquid Crystals, 2008, 484, 99/[465]-106/[472].	0.4	5
21	Analysis of Water Adsorption on Chitosan and Its Blends with Hydroxypropylcellulose. E-Polymers, 2007, 7, .	1.3	13
22	Influence of thermal history on the nonisothermal crystallization of poly(L-lactide). Journal of Applied Polymer Science, 2007, 105, 282-290.	1.3	24
23	Thermal analysis of chitosan and its blends. Thermochimica Acta, 2005, 427, 69-76.	1.2	171
24	Kinetics of water sorption by chitosan and its blends with poly(vinyl alcohol). Carbohydrate Polymers, 2005, 62, 42-49.	5.1	43
25	Thermogravimetric and FTIR studies of chitosan blends. Thermochimica Acta, 2003, 396, 153-166.	1.2	728
26	Polymer as an important component of blends and composites with liquid crystals. Progress in Polymer Science, 2003, 28, 837-873.	11.8	267
27	Kinetics study of phase separation in polyacrylic acid/nematic LC system by optical technique. , 2002, , .		2
28	Complex study on chitosan degradability. Polimery, 2002, 47, 509-516.	0.4	57
29	Electrical conductivity in thin layers of chitosan and chitosan acetate. IEEE Transactions on Dielectrics and Electrical Insulation, 2001, 8, 411-412.	1.8	6
30	Chitosan blends as fillers for paper. Journal of Applied Polymer Science, 2000, 77, 3210-3215.	1.3	38
31	Crystallization of isotactic polypropylene containing carbon black as a filler. Polymer, 2000, 41, 4137-4142.	1.8	110
32	Immiscible Polymer Blends Containing Dibutyrylchitin as Environmentally Friendly Materials. Molecular Crystals and Liquid Crystals, 2000, 354, 427-433.	0.3	2
33	Effect of curing progress on the electrooptical and switching properties of PDLC system. Journal of Applied Polymer Science, 1999, 71, 455-463.	1.3	42
34	Characterisation and morphology of biodegradable chitosan / synthetic polymer blends. Macromolecular Symposia, 1999, 144, 391-412.	0.4	46
35	Polymer composites containing chitosan and starch as biodegradable fillers. Polimery, 1999, 44, 24-29.	0.4	1

Polymer-dispersed liquid crystal displays: switching times effect. , 1998, , .

1

Maria Mucha

#	Article	IF	CITATIONS
37	Complex study of reorientational dynamics of the liquid crystal in PDLC films. Liquid Crystals, 1997, 23, 749-758.	0.9	14
38	Rheological characteristics of semi-dilute chitosan solutions. Macromolecular Chemistry and Physics, 1997, 198, 471-484.	1.1	85
39	Orientational effects in novel sideâ€chain liquid crystalline polyolefin blends. Macromolecular Symposia, 1996, 102, 191-198.	0.4	2
40	Analysis of mesophase formation in side-chain liquid crystalline polycarbosilanes. Journal of Thermal Analysis, 1996, 46, 795-808.	0.7	2
41	<title>Thermo- and electro-optical phenomena in dimeric liquid crystalline compounds</title> . , 1995, ,		0
42	Poly(ethylene oxide) blends with crosslinking polyester resin. Colloid and Polymer Science, 1994, 272, 1090-1097.	1.0	14
43	Study of Molecular Dynamics of a Nematic Main Chain Liquid Crystalline Polyester by Dielectric Spectroscopy. Molecular Crystals and Liquid Crystals, 1994, 249, 61-74.	0.3	4
44	<title>Phase transition studies of liquid-crystalline polyester by dielectric relaxation spectroscopy</title> . , 1993, 1845, 291.		0
45	<title>Liquid-crystalline behavior of the cellulose derivatives suspended in the photocuring polymer binder</title> . , 1993, , .		0
46	Title is missing!. Acta Polymerica, 1992, 43, 14-16.	1.4	1
47	Response time measurements of liquid crystal dispersed in polyester resin film. Journal of Applied Polymer Science, 1991, 43, 175-182.	1.3	24
48	Morphology and optical properties of liquid crystals embedded in polyester resin matrix. Colloid and Polymer Science, 1991, 269, 1111-1117.	1.0	3
49	Phase transition of polycarbonate in blends with liquid crystal. Colloid and Polymer Science, 1991, 269, 7-10.	1.0	10
50	Thermo-optical analysis as a complementary method in the study of phase transitions of thermotropic liquid crystalline polymer and its blends with polycarbonate. Colloid and Polymer Science, 1989, 267, 876-880.	1.0	6
51	Morphological aspects in photooxidation of isotactic polypropylene. Acta Polymerica, 1989, 40, 1-3.	1.4	6
52	Phase transition studies by thermal and thermooptical analysis of liquid crystals inserted into a polymeric matrix. Journal of Thermal Analysis, 1988, 33, 1177-1184.	0.7	11
53	Rate of thermooxidation and polymer morphology. Colloid and Polymer Science, 1986, 264, 1-8.	1.0	19
54	Miscibility of isotactic polypropylene with atactic polystyrene. Colloid and Polymer Science, 1986, 264, 859-865.	1.0	20

MARIA MUCHA

#	Article	IF	CITATIONS
55	Oxygen uptake by isotactic polypropylene of different morphological structure. Colloid and Polymer Science, 1986, 264, 113-116.	1.0	13
56	Thermo-oxidative stability of oriented polypropylene films. Acta Polymerica, 1985, 36, 648-652.	1.4	5
57	Thermooxidation rate of diacetate terminated polyoxymethylene with various morphological structures. Colloid and Polymer Science, 1984, 262, 841-850.	1.0	24
58	Isothermal thermogravimetric studies of molten diacetate terminated polyoxymethylene in nitrogen and air. Colloid and Polymer Science, 1984, 262, 851-855.	1.0	12
59	Thermal degradation of the blend poly(2,6-dimethyl-1,4-phenylene oxide)-polystyrene. Macromolecules, 1984, 17, 1315-1321.	2.2	15

60 Glass transition and thermal stability of blends composed of polycarbonate and poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 542

61	Title is missing!. Acta Polymerica, 1981, 32, 156-159.	1.4	4
62	Dilatometric studies of isotactic polypropylene with different morphology before and after thermal degradation in air. Colloid and Polymer Science, 1981, 259, 984-989.	1.0	9
63	The effect of morphology on thermal stability of isotactic polypropylene in air. Colloid and Polymer Science, 1980, 258, 743-752.	1.0	26
64	Class transition phenomenon in vinylidene chloride–acrylonitrile copolymers. Journal of Applied Polymer Science, 1971, 15, 2687-2697.	1.3	4
65	On the oxidation of modification products of polyvinylchloride and vinylchloride copolymers and of polyalkylenes. European Polymer Journal, 1969, 5, 495-497.	2.6	1
66	Biodegradable Polymers as Matrices for Control Drug Delivery. Advanced Materials Research, 0, 911, 336-341.	0.3	2