
Giada Lo Re

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1840023/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Waterâ€assisted melt processing of cellulose biocomposites with poly(εâ€caprolactone) or poly(ethyleneâ€acrylic acid) for the production of carton screw caps. Journal of Applied Polymer Science, 2022, 139, 51615.	2.6	4
2	Green Topochemical Esterification Effects on the Supramolecular Structure of Chitin Nanocrystals: Implications for Highly Stable Pickering Emulsions. ACS Applied Nano Materials, 2022, 5, 4731-4743.	5.0	7
3	Biocomposite PBAT/lignin blown films with enhanced photo-stability. International Journal of Biological Macromolecules, 2022, 217, 161-170.	7.5	24
4	Synergistic reinforcement of a reversible Diels–Alder type network with nanocellulose. Materials Advances, 2021, 2, 5171-5180.	5.4	3
5	Sustainable pathway towards large scale melt processing of the new generation of renewable cellulose–polyamide composites. RSC Advances, 2021, 11, 637-656.	3.6	14
6	Substantial Effect of Water on Radical Melt Crosslinking and Rheological Properties of Poly(ε-Caprolactone). Polymers, 2021, 13, 491.	4.5	12
7	A Combined Theoretical and Experimental Study of the Polymer Matrix-Mediated Stress Transfer in a Cellulose Nanocomposite. Macromolecules, 2021, 54, 3507-3516.	4.8	13
8	Thermo-mechanical variability of post-industrial and post-consumer recyclate PC-ABS. Polymer Testing, 2021, 99, 107216.	4.8	10
9	Processing-structure-property relationships of electrospun PLA-PEO membranes reinforced with enzymatic cellulose nanofibers. Polymer Testing, 2020, 81, 106182.	4.8	30
10	Strong reinforcement effects in 2D cellulose nanofibril–graphene oxide (CNF–GO) nanocomposites due to GO-induced CNF ordering. Journal of Materials Chemistry A, 2020, 8, 17608-17620.	10.3	31
11	Surface modification effects on nanocellulose – molecular dynamics simulations using umbrella sampling and computational alchemy. Journal of Materials Chemistry A, 2020, 8, 23617-23627.	10.3	24
12	Interphase Design of Cellulose Nanocrystals/Poly(hydroxybutyrate- <i>ran</i> -valerate) Bionanocomposites for Mechanical and Thermal Properties Tuning. Biomacromolecules, 2020, 21, 1892-1901.	5.4	17
13	Melt-processing of cellulose nanofibril/polylactide bionanocomposites via a sustainable polyethylene glycol-based carrier system. Carbohydrate Polymers, 2019, 224, 115188.	10.2	20
14	Molecular Engineering of the Cellulose-Poly(Caprolactone) Bio-Nanocomposite Interface by Reactive Amphiphilic Copolymer Nanoparticles. ACS Nano, 2019, 13, 6409-6420.	14.6	26
15	Tunable Thermosetting Epoxies Based on Fractionated and Well-Characterized Lignins. Journal of the American Chemical Society, 2018, 140, 4054-4061.	13.7	220
16	Advanced piezoresistive sensor achieved by amphiphilic nanointerfaces of graphene oxide and biodegradable polymer blends. Composites Science and Technology, 2018, 156, 166-176.	7.8	78
17	Poly(ε-caprolactone) Biocomposites Based on Acetylated Cellulose Fibers and Wet Compounding for Improved Mechanical Performance. ACS Sustainable Chemistry and Engineering, 2018, 6, 6753-6760.	6.7	31
18	Tailoring Nanocellulose–Cellulose Triacetate Interfaces by Varying the Surface Grafting Density of Poly(ethylene glycol). ACS Omega, 2018, 3, 11883-11889.	3.5	12

Giada Lo Re

#	Article	IF	CITATIONS
19	Wet Feeding Approach for Cellulosic Materials/PCL Biocomposites. ACS Symposium Series, 2018, , 209-226.	0.5	6
20	Improved Cellulose Nanofibril Dispersion in Melt-Processed Polycaprolactone Nanocomposites by a Latex-Mediated Interphase and Wet Feeding as LDPE Alternative. ACS Applied Nano Materials, 2018, 1, 2669-2677.	5.0	34
21	Multiresponsive Shape Memory Blends and Nanocomposites Based on Starch. ACS Applied Materials & Interfaces, 2016, 8, 19197-19201.	8.0	40
22	The role of PLLA-g-montmorillonite nanohybrids in the acceleration of the crystallization rate of a commercial PLA. CrystEngComm, 2016, 18, 9334-9344.	2.6	19
23	Bio-based epoxy resin toughening with cashew nut shell liquid-derived resin. Green Materials, 2015, 3, 80-92.	2.1	23
24	Modification of cellulose nanocrystals with lactic acid for direct melt blending with PLA. AIP Conference Proceedings, 2015, , .	0.4	6
25	A facile method to determine pore size distribution in porous scaffold by using image processing. Micron, 2015, 76, 37-45.	2.2	51
26	Polylactide/cellulose nanocrystal nanocomposites: Efficient routes for nanofiber modification and effects of nanofiber chemistry on PLA reinforcement. Polymer, 2015, 65, 9-17.	3.8	163
27	In Situ Metal-Free Synthesis of Polylactide Enantiomers Grafted from Nanoclays of High Thermostability. ACS Symposium Series, 2015, , 287-303.	0.5	0
28	Enzymatic reactive extrusion: moving towards continuous enzyme-catalysed polyester polymerisation and processing. Green Chemistry, 2015, 17, 4146-4150.	9.0	49
29	Poly(ω-pentadecalactone)- <i>b</i> -poly(<scp> </scp> -lactide) Block Copolymers via Organic-Catalyzed Ring Opening Polymerization and Potential Applications. ACS Macro Letters, 2015, 4, 408-411.	4.8	56
30	Biobased epoxy resin toughening with cashew nut shell liquid-derived resin. Green Materials, 2015, 3, 1-38.	2.1	1
31	Stereocomplexed PLA nanocomposites: From in situ polymerization to materials properties. European Polymer Journal, 2014, 54, 138-150.	5.4	51
32	Phenanthroline-functionalized MWCNTs as versatile platform for lanthanides complexation. Carbon, 2014, 70, 22-29.	10.3	1
33	Biodegradation paths of Materâ€Bi®/kenaf biodegradable composites. Journal of Applied Polymer Science, 2013, 129, 3198-3208.	2.6	39
34	3D polylactide-based scaffolds for studying human hepatocarcinoma processes <i>in vitro</i> . Science and Technology of Advanced Materials, 2012, 13, 045003.	6.1	25
35	Kenafâ€filled biodegradable composites: rheological and mechanical behaviour. Polymer International, 2012, 61, 1542-1548.	3.1	22
36	Surface modification of poly(ethylene-co-acrylic acid) with amino-functionalized silica nanoparticles. Journal of Materials Chemistry, 2011, 21, 3849.	6.7	30

GIADA LO RE

#	Article	IF	CITATIONS
37	A new route for the preparation of flexible skin–core poly(ethylene-co-acrylic acid)/polyaniline functional hybrids. Reactive and Functional Polymers, 2011, 71, 1177-1186.	4.1	8
38	Effect of the processing techniques on the properties of ecocomposites based on vegetable oilâ€derived Materâ€Bi® and wood flour. Journal of Applied Polymer Science, 2009, 114, 2855-2863.	2.6	33
39	Degradation of Mater-Bi®/wood flour biocomposites in active sewage sludge. Polymer Degradation and Stability, 2009, 94, 1220-1229.	5.8	35
40	Effect of the processing on the properties of biopolymer based composites filled with wood flour. International Journal of Material Forming, 2008, 1, 759-762.	2.0	6