Gabriel Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1839922/publications.pdf

Version: 2024-02-01

	840776	752698
515	11	20
citations	h-index	g-index
56	56	380
docs citations	times ranked	citing authors
	citations 56	515 11 h-index 56 56

#	Article	IF	CITATIONS
1	Semantic Services Catalog for Multiagent Systems Society. Lecture Notes in Computer Science, 2021, , 229-240.	1.3	2
2	Ontologies to Enable Interoperability of Multi-Agent Electricity Markets Simulation and Decision Support. Electronics (Switzerland), 2021, 10, 1270.	3.1	8
3	Upgrading BRICKSâ€"The Context-Aware Semantic Rule-Based System for Intelligent Building Energy and Security Management. Energies, 2021, 14, 4541.	3.1	4
4	Semantic Interoperability for Multiagent Simulation and Decision Support in Power Systems. Communications in Computer and Information Science, 2021, , 215-226.	0.5	1
5	From the smart grid to the local electricity market. , 2021, , 63-76.		5
6	BRICKS: Building's reasoning for intelligent control knowledge-based system. Sustainable Cities and Society, 2020, 52, 101832.	10.4	19
7	Application Ontology for Multi-Agent and Web-Services' Co-Simulation in Power and Energy Systems. IEEE Access, 2020, 8, 81129-81141.	4.2	13
8	Constrained Generation Bids in Local Electricity Markets: A Semantic Approach. Energies, 2020, 13, 3990.	3.1	6
9	Multi-Agent-Based CBR Recommender System for Intelligent Energy Management in Buildings. IEEE Systems Journal, 2019, 13, 1084-1095.	4.6	32
10	Multi-agent semantic interoperability in complex energy systems simulation and decision support. , 2019, , .		5
11	Semantic Web Services for Multi-Agent Systems Interoperability. Lecture Notes in Computer Science, 2019, , 606-616.	1.3	6
12	Multi-agent Systems Society for Power and Energy Systems Simulation. Lecture Notes in Computer Science, 2019, , 126-137.	1.3	1
13	A context-based building security alarm through power and sensors analysis. Energy Informatics, $2018,1,.$	2.3	3
14	Iberian electricity market ontology to enable smart grid market simulation. Energy Informatics, 2018, 1, \cdot	2.3	7
15	Power Systems Simulation Using Ontologies to Enable the Interoperability of Multi-Agent Systems. , 2018, , .		1
16	Rule-Based Model for Smart Building Supervision and Management. , 2018, , .		7
17	Multi-Agent Decision Support Tool to Enable Interoperability among Heterogeneous Energy Systems. Applied Sciences (Switzerland), 2018, 8, 328.	2.5	19
18	Tools Control Center to Enable the Joint Simulation of Multi-agent Systems. Advances in Intelligent Systems and Computing, 2018, , 307-308.	0.6	0

#	Article	IF	CITATIONS
19	Ontologies for the Interoperability of Heterogeneous Multi-agent Systems in the Scope of Power and Energy Systems. Advances in Intelligent Systems and Computing, 2018, , 300-301.	0.6	4
20	Demonstration of Tools Control Center for Multi-agent Energy Systems Simulation. Lecture Notes in Computer Science, 2018, , 353-356.	1.3	0
21	Ontology-based model for trusted critical site supervision in FUSE-IT. , 2017, , .		3
22	Nord Pool Ontology to Enhance Electricity Markets Simulation in MASCEM. Lecture Notes in Computer Science, 2017, , 283-294.	1.3	5
23	Reserve costs allocation model for energy and reserve market simulation. , 2017, , .		12
24	EPEX ontology: Enhancing agent-based electricity market simulation. , 2017, , .		6
25	TOOCC: Enabling heterogeneous systems interoperability in the study of energy systems. , 2017, , .		3
26	An Interoperable Approach for Energy Systems Simulation: Electricity Market Participation Ontologies. Energies, 2016, 9, 878.	3.1	15
27	House management system with real and virtual resources: Energy efficiency in residential microgrid. , 2016, , .		9
28	Generation of realistic scenarios for multi-agent simulation of electricity markets. Energy, 2016, 116, 128-139.	8.8	25
29	MASCEM: Optimizing the performance of a multi-agent system. Energy, 2016, 111, 513-524.	8.8	58
30	Electricity Markets Ontology to Support MASCEM's Simulations. Communications in Computer and Information Science, 2016, , 393-404.	0.5	9
31	Enabling Communications in Heterogeneous Multi-Agent Systems: Electricity Markets Ontology. Advances in Distributed Computing and Artificial Intelligence Journal, 2016, 5, 15-42.	1.5	19
32	Demonstration of ALBidS: Adaptive Learning Strategic Bidding System. Lecture Notes in Computer Science, 2016, , 281-285.	1.3	0
33	Multi-agent based metalearner using genetic algorithm for decision support in electricity markets. , 2015, , .		1
34	Coalition of distributed generation units to Virtual Power Players - a game theory approach. Integrated Computer-Aided Engineering, 2015, 22, 297-309.	4.6	12
35	Analysis of strategic wind power participation in energy market using MASCEM simulator. , 2015, , .		0
36	Multi-agent simulation of competitive electricity markets: Autonomous systems cooperation for European market modeling. Energy Conversion and Management, 2015, 99, 387-399.	9.2	59

#	Article	IF	CITATIONS
37	Solar Intensity Characterization Using Data-Mining to Support Solar Forecasting. Advances in Intelligent Systems and Computing, 2015, , 193-201.	0.6	3
38	MASCEM: EPEX SPOT Day-Ahead market integration and simulation. , 2015, , .		3
39	Pan-European Electricity Market Simulation Considering the European Power Network Capacities. , 2015, , .		3
40	Agent-Based Smart Grid Market Simulation with Connection to Real Infrastructures. Communications in Computer and Information Science, 2015, , 283-295.	0.5	1
41	Smart Grid and Electricity Market joint simulation using complementary Multi-Agent platforms. , 2015, , .		5
42	Realistic Multi-agent Simulation of Competitive Electricity Markets. , 2014, , .		2
43	Adaptive learning in agents behaviour: A framework for electricity markets simulation. Integrated Computer-Aided Engineering, 2014, 21, 399-415.	4.6	67
44	Multi-agent Simulation of Bilateral Contracting in Competitive Electricity Markets. , 2014, , .		1
45	Towards a unified European electricity market: The contribution of data-mining to support realistic simulation studies. , $2014, \ldots$		2
46	Data mining approach to support the generation of Realistic Scenarios for multi-agent simulation of electricity markets. , $2014, \ldots$		14
47	Elspot: Nord Pool Spot Integration in MASCEM Electricity Market Simulator. Communications in Computer and Information Science, 2014, , 262-272.	0.5	2
48	Scenarios generation for multi-agent simulation of electricity markets based on intelligent data analysis. , 2013 , , .		4
49	Intelligent remuneration and tariffs for virtual power players. , 2013, , .		7
50	MASCEM restructuring: Ontologies for scenarios generation in power systems simulators. , 2013, , .		2
51	Demonstration of the Multi-Agent Simulator of Competitive Electricity Markets. Lecture Notes in Computer Science, 2013, , 316-319.	1.3	0
52	Balancing market integration in MASCEM electricity market simulator. , 2012, , .		7
53	Multi-agent Simulation of Continental, Regional, and Micro Electricity Markets., 2012, , .		2
54	Complex market integration in MASCEM electricity market simulator., 2011,,.		6