Charles Bennett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1839843/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SEVEN-YEAR <i>WILKINSON MICROWAVE ANISOTROPY PROBE</i> (<i>WMAP</i>) OBSERVATIONS: COSMOLOGICAL INTERPRETATION. Astrophysical Journal, Supplement Series, 2011, 192, 18.	3.0	6,656
2	FIVE-YEAR <i>WILKINSON MICROWAVE ANISOTROPY PROBE</i> OBSERVATIONS: COSMOLOGICAL INTERPRETATION. Astrophysical Journal, Supplement Series, 2009, 180, 330-376.	3.0	4,114
3	NINE-YEAR <i>WILKINSON MICROWAVE ANISOTROPY PROBE</i> (<i>WMAP</i>) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS. Astrophysical Journal, Supplement Series, 2013, 208, 19.	3.0	3,998
4	First‥ear Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results. Astrophysical Journal, Supplement Series, 2003, 148, 1-27.	3.0	3,843
5	NINE-YEAR <i>WILKINSON MICROWAVE ANISOTROPY PROBE</i> (<i>WMAP</i>) OBSERVATIONS: FINAL MAPS AND RESULTS. Astrophysical Journal, Supplement Series, 2013, 208, 20.	3.0	1,810
6	FIVE-YEAR <i>WILKINSON MICROWAVE ANISOTROPY PROBE</i> OBSERVATIONS: LIKELIHOODS AND PARAMETERS FROM THE <i>WMAP</i> DATA. Astrophysical Journal, Supplement Series, 2009, 180, 306-329.	3.0	1,337
7	FIVE-YEAR <i>WILKINSON MICROWAVE ANISOTROPY PROBE</i> OBSERVATIONS: DATA PROCESSING, SKY MAPS, AND BASIC RESULTS. Astrophysical Journal, Supplement Series, 2009, 180, 225-245.	3.0	1,316
8	SEVEN-YEAR <i>WILKINSON MICROWAVE ANISOTROPY PROBE</i> (<i>WMAP</i>) OBSERVATIONS: POWER SPECTRA AND <i>WMAP</i> -DERIVED PARAMETERS. Astrophysical Journal, Supplement Series, 2011, 192, 16.	3.0	1,207
9	Four-Year [ITAL]COBE[/ITAL] DMR Cosmic Microwave Background Observations: Maps and Basic Results. Astrophysical Journal, 1996, 464, L1-L4.	1.6	1,015
10	SEVEN-YEAR <i>WILKINSON MICROWAVE ANISOTROPY PROBE</i> (<i>WMAP</i>) OBSERVATIONS: SKY MAPS, SYSTEMATIC ERRORS, AND BASIC RESULTS. Astrophysical Journal, Supplement Series, 2011, 192, 14.	3.0	922
11	First‥ear Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission. Astrophysical Journal, Supplement Series, 2003, 148, 97-117.	3.0	800
12	Three‥ear Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Temperature Analysis. Astrophysical Journal, Supplement Series, 2007, 170, 288-334.	3.0	778
13	Three‥ear Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Polarization Analysis. Astrophysical Journal, Supplement Series, 2007, 170, 335-376.	3.0	737
14	First‥ear Wilkinson Microwave Anisotropy Probe (WMAP) Observations: The Angular Power Spectrum. Astrophysical Journal, Supplement Series, 2003, 148, 135-159.	3.0	727
15	SEVEN-YEAR <i>WILKINSON MICROWAVE ANISOTROPY PROBE</i> (<i>WMAP</i>) OBSERVATIONS: ARE THERE COSMIC MICROWAVE BACKGROUND ANOMALIES?. Astrophysical Journal, Supplement Series, 2011, 192, 17.	3.0	448
16	TheMicrowave Anisotropy ProbeMission. Astrophysical Journal, 2003, 583, 1-23.	1.6	413
17	THE 1% CONCORDANCE HUBBLE CONSTANT. Astrophysical Journal, 2014, 794, 135.	1.6	326
18	FIVE-YEAR <i>WILKINSON MICROWAVE ANISOTROPY PROBE</i> OBSERVATIONS: ANGULAR POWER SPECTRA. Astrophysical Journal, Supplement Series, 2009, 180, 296-305.	3.0	291

2

#	Article	IF	CITATIONS
19	QUANTIFYING DISCORDANCE IN THE 2015 PLANCK CMB SPECTRUM. Astrophysical Journal, 2016, 818, 132.	1.6	192
20	Elucidating \hat{P} CDM: Impact of Baryon Acoustic Oscillation Measurements on the Hubble Constant Discrepancy. Astrophysical Journal, 2018, 853, 119.	1.6	176
21	FIVE-YEAR <i>WILKINSON MICROWAVE ANISOTROPY PROBE</i> OBSERVATIONS: GALACTIC FOREGROUND EMISSION. Astrophysical Journal, Supplement Series, 2009, 180, 265-282.	3.0	175
22	Three‥ear Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Beam Profiles, Data Processing, Radiometer Characterization, and Systematic Error Limits. Astrophysical Journal, Supplement Series, 2007, 170, 263-287.	3.0	154
23	SEVEN-YEAR <i>WILKINSON MICROWAVE ANISOTROPY PROBE</i> (<i>WMAP</i>) OBSERVATIONS: PLANETS AND CELESTIAL CALIBRATION SOURCES. Astrophysical Journal, Supplement Series, 2011, 192, 19.	3.0	147
24	First‥ear Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Beam Profiles and Window Functions. Astrophysical Journal, Supplement Series, 2003, 148, 39-50.	3.0	140
25	Tests for Non-Gaussian Statistics in the DMR Four-Year Sky Maps. Astrophysical Journal, 1996, 464, L29-L33.	1.6	120
26	FIVE-YEAR <i>WILKINSON MICROWAVE ANISOTROPY PROBE</i> OBSERVATIONS: SOURCE CATALOG. Astrophysical Journal, Supplement Series, 2009, 180, 283-295.	3.0	112
27	FIVE-YEAR <i>WILKINSON MICROWAVE ANISOTROPY PROBE</i> (<i>WMAP</i>) OBSERVATIONS: BAYESIAN ESTIMATION OF COSMIC MICROWAVE BACKGROUND POLARIZATION MAPS. Astrophysical Journal, 2009, 701, 1804-1813.	1.6	107
28	CLASS: the cosmology large angular scale surveyor. Proceedings of SPIE, 2014, , .	0.8	90
29	First‥ear Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Onâ€Orbit Radiometer Characterization. Astrophysical Journal, Supplement Series, 2003, 148, 29-37.	3.0	75
30	FIVE-YEAR <i>WILKINSON MICROWAVE ANISOTROPY PROBE</i> OBSERVATIONS: BEAM MAPS AND WINDOW FUNCTIONS. Astrophysical Journal, Supplement Series, 2009, 180, 246-264.	3.0	68
31	First‥ear Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Galactic Signal Contamination from Sidelobe Pickup. Astrophysical Journal, Supplement Series, 2003, 148, 51-62.	3.0	49
32	Cosmic sound waves rule. Physics Today, 2008, 61, 44-50.	0.3	46
33	A Low Cross-Polarization Smooth-Walled Horn With Improved Bandwidth. IEEE Transactions on Antennas and Propagation, 2010, 58, 1383-1387.	3.1	44
34	The Cosmology Large Angular Scale Surveyor. Proceedings of SPIE, 2016, , .	0.8	43
35	Noncosmological Signal Contributions to the [ITAL]COBE[/ITAL] DMR 4 Year Sky Maps. Astrophysical Journal, 1996, 468, L85-L89.	1.6	39
36	COBE differential microwave radiometers - Calibration techniques. Astrophysical Journal, 1992, 391, 466.	1.6	39

#	Article	IF	CITATIONS
37	The cosmology large angular scale surveyor (CLASS): 40 GHz optical design. Proceedings of SPIE, 2012, ,	0.8	38
38	A 3D-printed broadband millimeter wave absorber. Review of Scientific Instruments, 2019, 90, 024701.	0.6	29
39	COMPARING <i>PLANCK</i> AND <i>WMAP</i> : MAPS, SPECTRA, AND PARAMETERS. Astrophysical Journal, 2015, 801, 9.	1.6	26
40	A Projected Estimate of the Reionization Optical Depth Using the CLASS Experiment's Sample Variance Limited E-mode Measurement. Astrophysical Journal, 2018, 863, 121.	1.6	26
41	Full-sky Cosmic Microwave Background Foreground Cleaning Using Machine Learning. Astrophysical Journal, 2020, 903, 104.	1.6	26
42	The CLASS 150/220ÂGHz Polarimeter Array: Design, Assembly, and Characterization. Journal of Low Temperature Physics, 2020, 199, 289-297.	0.6	23
43	MEASURING THE LARGEST ANGULAR SCALE CMB B-MODE POLARIZATION WITH GALACTIC FOREGROUNDS ON A CUT SKY. Astrophysical Journal, 2015, 814, 103.	1.6	22
44	Two-year Cosmology Large Angular Scale Surveyor (CLASS) Observations: 40 GHz Telescope Pointing, Beam Profile, Window Function, and Polarization Performance. Astrophysical Journal, 2020, 891, 134.	1.6	22
45	The Primordial Inflation Polarization Explorer (PIPER). Proceedings of SPIE, 2014, , .	0.8	21
46	Cosmology from start to finish. Nature, 2006, 440, 1126-1131.	13.7	19
46 47	Cosmology from start to finish. Nature, 2006, 440, 1126-1131. RECOVERY OF LARGE ANGULAR SCALE CMB POLARIZATION FOR INSTRUMENTS EMPLOYING VARIABLE-DELAY POLARIZATION MODULATORS. Astrophysical Journal, 2016, 818, 151.	13.7 1.6	19 19
46 47 48	Cosmology from start to finish. Nature, 2006, 440, 1126-1131. RECOVERY OF LARGE ANGULAR SCALE CMB POLARIZATION FOR INSTRUMENTS EMPLOYING VARIABLE-DELAY POLARIZATION MODULATORS. Astrophysical Journal, 2016, 818, 151. Assessing Consistency between WMAP 9 Year and Planck 2015 Temperature Power Spectra. Astrophysical Journal, 2018, 869, 38.	13.7 1.6 1.6	19 19 19
46 47 48 49	Cosmology from start to finish. Nature, 2006, 440, 1126-1131.RECOVERY OF LARGE ANGULAR SCALE CMB POLARIZATION FOR INSTRUMENTS EMPLOYING VARIABLE-DELAY POLARIZATION MODULATORS. Astrophysical Journal, 2016, 818, 151.Assessing Consistency between WMAP 9 Year and Planck 2015 Temperature Power Spectra. Astrophysical Journal, 2018, 869, 38.Four-year Cosmology Large Angular Scale Surveyor (CLASS) Observations: On-sky Receiver Performance at 40, 90, 150, and 220 GHz Frequency Bands. Astrophysical Journal, 2022, 926, 33.	13.7 1.6 1.6	19 19 19 19
46 47 48 49 50	Cosmology from start to finish. Nature, 2006, 440, 1126-1131.RECOVERY OF LARGE ANGULAR SCALE CMB POLARIZATION FOR INSTRUMENTS EMPLOYING VARIABLE-DELAY POLARIZATION MODULATORS. Astrophysical Journal, 2016, 818, 151.Assessing Consistency between WMAP 9 Year and Planck 2015 Temperature Power Spectra. Astrophysical Journal, 2018, 869, 38.Four-year Cosmology Large Angular Scale Surveyor (CLASS) Observations: On-sky Receiver Performance at 40, 90, 150, and 220 GHz Frequency Bands. Astrophysical Journal, 2022, 926, 33.The Primordial Inflation Polarization Explorer (PIPER). Proceedings of SPIE, 2016, , .	13.7 1.6 1.6 1.6 0.8	19 19 19 19 19 19
46 47 48 49 50 51	Cosmology from start to finish. Nature, 2006, 440, 1126-1131.RECOVERY OF LARGE ANGULAR SCALE CMB POLARIZATION FOR INSTRUMENTS EMPLOYING VARIABLE-DELAY POLARIZATION MODULLATORS. Astrophysical Journal, 2016, 818, 151.Assessing Consistency between WMAP 9 Year and Planck 2015 Temperature Power Spectra. Astrophysical Journal, 2018, 869, 38.Four-year Cosmology Large Angular Scale Surveyor (CLASS) Observations: On-sky Receiver Performance at 40, 90, 150, and 220 GHz Frequency Bands. Astrophysical Journal, 2022, 926, 33.The Primordial Inflation Polarization Explorer (PIPER). Proceedings of SPIE, 2016, , .Effect of Template Uncertainties on the WMAP and Planck Measures of the Optical Depth Due to Reionization. Astrophysical Journal, 2018, 863, 161.	 13.7 1.6 1.6 0.8 1.6 	 19 19 19 19 19 10 10 16 16
46 47 48 49 50 51 52	Cosmology from start to finish. Nature, 2006, 440, 1126-1131.RECOVERY OF LARCE ANGULAR SCALE CMB POLARIZATION FOR INSTRUMENTS EMPLOYING VARIABLE-DELAY POLARIZATION MODULATORS. Astrophysical Journal, 2016, 818, 151.Assessing Consistency between WMAP 9 Year and Planck 2015 Temperature Power Spectra. Astrophysical Journal, 2018, 869, 38.Four-year Cosmology Large Angular Scale Surveyor (CLASS) Observations: On-sky Receiver Performance at 40, 90, 150, and 220 GHz Frequency Bands. Astrophysical Journal, 2022, 926, 33.The Primordial Inflation Polarization Explorer (PIPER). Proceedings of SPIE, 2016, , .Effect of Template Uncertainties on the WMAP and Planck Measures of the Optical Depth Due to Relonization. Astrophysical Journal, 2018, 863, 161.On-sky Performance of the CLASS Q-band Telescope. Astrophysical Journal, 2019, 876, 126.	 13.7 1.6 1.6 0.8 1.6 1.6 	 19 19 19 19 19 10 16 16 16
46 47 48 49 50 51 52 53	Cosmology from start to finish. Nature, 2006, 440, 1126-1131.RECOVERY OF LARGE ANGULIAR SCALE CMB POLARIZATION FOR INSTRUMENTS EMPLOYING VARIABLE-DELAY POLARIZATION MODULIATORS. Astrophysical Journal, 2016, 818, 151.Assessing Consistency between WMAP 9 Year and Planck 2015 Temperature Power Spectra. Astrophysical Journal, 2018, 869, 38.Four-year Cosmology Large Angular Scale Surveyor (CLASS) Observations: On-sky Receiver Performance at 40, 90, 150, and 220 CH2 Frequency Bands. Astrophysical Journal, 2022, 926, 33.The Primordial Inflation Polarization Explorer (PIPER). Proceedings of SPIE, 2016, , .Effect of Template Uncertainties on the WMAP and Planck Measures of the Optical Depth Due to Reionization. Astrophysical Journal, 2018, 863, 161.On-sky Performance of the CLASS Q-band Telescope. Astrophysical Journal, 2019, 876, 126.The Impact of Line Misidentification on Cosmological Constraints from Euclid and Other Spectroscopic Calaxy Surveys. Astrophysical Journal, 2019, 879, 15.	 13.7 1.6 1.6 0.8 1.6 1.6 1.6 1.6 	 19 19 19 19 19 10 10 16 16 16 15

#	Article	IF	CITATIONS
55	Fabrication of a Silicon Backshort Assembly for Waveguide-Coupled Superconducting Detectors. IEEE Transactions on Applied Superconductivity, 2013, 23, 2500505-2500505.	1.1	13
56	Variable-delay polarization modulators for the CLASS telescopes. , 2018, , .		13
57	THE SUBMILLIMETER POLARIZATION SPECTRUM OF M17. Astrophysical Journal, 2013, 773, 29.	1.6	12
58	Search for unresolved sources in the COBE-DMR two-year sky maps. Astrophysical Journal, 1994, 433, 435.	1.6	12
59	Design and characterization of the Cosmology Large Angular Scale Surveyor (CLASS) 93 GHz focal plane. , 2018, , .		12
60	Detector architecture of the cosmology large angular scale surveyor. Proceedings of SPIE, 2012, , .	0.8	11
61	Electromagnetic Design of Feedhorn-Coupled Transition-Edge Sensors for Cosmic Microwave Background Polarimetry. Journal of Low Temperature Physics, 2012, 167, 923-928.	0.6	11
62	Two-year Cosmology Large Angular Scale Surveyor (CLASS) Observations: A First Detection of Atmospheric Circular Polarization at Q band. Astrophysical Journal, 2020, 889, 120.	1.6	11
63	Fabrication of Feedhorn-Coupled Transition Edge Sensor Arrays for Measurement of the Cosmic Microwave Background Polarization. Journal of Low Temperature Physics, 2016, 184, 668-673.	0.6	10
64	Quantifying the CMB Degeneracy between the Matter Density and Hubble Constant in Current Experiments. Astrophysical Journal, 2019, 871, 77.	1.6	10
65	Silicon-based antenna-coupled polarization-sensitive millimeter-wave bolometer arrays for cosmic microwave background instruments. Proceedings of SPIE, 2016, , .	0.8	9
66	The primordial inflation polarization explorer (PIPER): current status and performance of the first flight (Conference Presentation). , 2018, , .		9
67	Astrophysical Observations: Lensing and Eclipsing Einstein's Theories. Science, 2005, 307, 879-884.	6.0	8
68	Note: Vector reflectometry in a beam waveguide. Review of Scientific Instruments, 2011, 82, 086101.	0.6	8
69	Beyond Optical Depth: Future Determination of Ionization History from the Cosmic Microwave Background. Astrophysical Journal, 2020, 889, 130.	1.6	8
70	An Examination of Galactic Polarization with Application to the Planck TB Correlation. Astrophysical Journal, 2020, 893, 119.	1.6	8
71	Deconstructing the Planck TT Power Spectrum to Constrain Deviations from \hat{b} CDM. Astrophysical Journal, 2020, 905, 164.	1.6	8
72	Two Year Cosmology Large Angular Scale Surveyor (CLASS) Observations: Long Timescale Stability Achieved with a Front-end Variable-delay Polarization Modulator at 40 GHz. Astrophysical Journal, 2021, 922, 212.	1.6	8

#	Article	IF	CITATIONS
73	The Primordial Inflation Polarization Explorer (PIPER). Proceedings of SPIE, 2012, , .	0.8	7
74	Sub-Kelvin cooling for two kilopixel bolometer arrays in the PIPER receiver. Review of Scientific Instruments, 2019, 90, 095104.	0.6	7
75	Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development. Journal of Low Temperature Physics, 2016, 184, 759-764.	0.6	6
76	The Primordial Inflation Polarization Explorer (PIPER): optical design. Proceedings of SPIE, 2010, , .	0.8	5
77	Venus Observations at 40 and 90 GHz with CLASS. Planetary Science Journal, 2021, 2, 71.	1.5	5
78	SiAl alloy feedhorn arrays: material properties, feedhorn design, and astrophysical applications. , 2018, , .		4
79	A wide-band smooth-walled feedhorn with low cross polarization for millimeter astronomy. Proceedings of SPIE, 2010, , .	0.8	3
80	Scalable background-limited polarization-sensitive detectors for mm-wave applications. Proceedings of SPIE, 2014, , .	0.8	3
81	Limits on Polarized Dust Spectral Index Variations for CMB Foreground Analysis. Astrophysical Journal, 2021, 921, 175.	1.6	3
82	Accounting for Correlations When Fitting Extra Cosmological Parameters. Astrophysical Journal, 2019, 882, 124.	1.6	2
83	Analytic Calculation of Covariance between Cosmological Parameters from Correlated Data Sets, with an Application to SPTpol. Astrophysical Journal, 2020, 888, 26.	1.6	2
84	<i>Science</i> Title Misstep. Science, 2011, 332, 1263-1263.	6.0	1
85	Aerogel scattering filters for cosmic microwave background observations. Applied Optics, 2020, 59, 5439.	0.9	1
86	SiAl composite feedhorn arrays for astrophysical applications: Cryogenic material properties. Review of Scientific Instruments, 2022, 93, 024503.	0.6	1
87	CMB anisotropy at 0°.5 angular scale II. Analysis of peaks. AIP Conference Proceedings, 1995, , .	0.3	0
88	Cosmology at a Crossroads. Science, 2009, 325, 1347-1348.	6.0	0