Adalberto Fazzio

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/183942/adalberto-fazzio-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

305 8,752 48 83 g-index

313 9,520 4 6.28 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
305	Daphnia magna and mixture toxicity with nanomaterials ©urrent status and perspectives in data-driven risk prediction. <i>Nano Today</i> , 2022 , 43, 101430	17.9	2
304	High-throughput inverse design and Bayesian optimization of functionalities: spin splitting in two-dimensional compounds <i>Scientific Data</i> , 2022 , 9, 195	8.2	
303	At the Verge of Topology: Vacancy-Driven Quantum Spin Hall in Trivial Insulators. <i>Nano Letters</i> , 2021 , 21, 9398-9402	11.5	O
302	Disassembly of TEMPO-Oxidized Cellulose Fibers: Intersheet and Interchain Interactions in the Isolation of Nanofibers and Unitary Chains. <i>Journal of Physical Chemistry B</i> , 2021 , 125, 3717-3724	3.4	O
301	Discovery of higher-order topological insulators using the spin Hall conductivity as a topology signature. <i>Npj Computational Materials</i> , 2021 , 7,	10.9	2
300	Unveiling the dopant segregation effect at hematite interfaces. Applied Physics Letters, 2021, 118, 2016	50324	4
299	Conformational analysis of tannic acid: Environment effects in electronic and reactivity properties. Journal of Chemical Physics, 2021 , 154, 224102	3.9	O
298	Recent Advances in Immunosafety and Nanoinformatics of Two-Dimensional Materials Applied to Nano-imaging. <i>Frontiers in Immunology</i> , 2021 , 12, 689519	8.4	1
297	Room-Temperature Negative Differential Resistance in Surface-Supported Metal-Organic Framework Vertical Heterojunctions. <i>Small</i> , 2021 , 17, e2101475	11	3
296	Distilling small volumes of crude oil. <i>Fuel</i> , 2021 , 285, 119072	7.1	2
295	Disorder effects of vacancies on the electronic transport properties of realistic topological insulator nanoribbons: The case of bismuthene. <i>Physical Review Materials</i> , 2021 , 5,	3.2	4
294	Bandgap evolution in nanographene assemblies. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 11501-1	1 5.6 6	1
293	Structural and electronic properties of realistic two-dimensional amorphous topological insulators. <i>2D Materials</i> , 2021 , 8, 025032	5.9	6
292	Pair Distribution Function Obtained from Electron Diffraction: An Advanced Real-Space Structural Characterization Tool. <i>Matter</i> , 2021 , 4, 441-460	12.7	7
291	Machine learning for materials discovery: Two-dimensional topological insulators. <i>Applied Physics Reviews</i> , 2021 , 8, 031409	17.3	7
290	Emergent quasiparticles in Euclidean tilings. <i>Nanoscale</i> , 2021 , 13, 5270-5274	7.7	2
289	Converging Multidimensional Sensor and Machine Learning Toward High-Throughput and Biorecognition Element-Free Multidetermination of Extracellular Vesicle Biomarkers. <i>ACS Sensors</i> , 2020 , 5, 1864-1871	9.2	10

(2019-2020)

288	Pair Distribution Function from Electron Diffraction in Cryogenic Electron Microscopy: Revealing Glassy Water Structure. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 1564-1569	6.4	9
287	Jacutingaite-family: A class of topological materials. <i>Physical Review B</i> , 2020 , 102,	3.3	3
286	Exploring Two-Dimensional Materials Thermodynamic Stability via Machine Learning. <i>ACS Applied Materials & Acs Applied & Acs</i>	9.5	43
285	Simulations and Materials Chemistry in the Age of Big Data. <i>Journal of Chemical Information and Modeling</i> , 2020 , 60, 452-459	6.1	18
284	Ambipolar Resistive Switching in an Ultrathin Surface-Supported Metal-Organic Framework Vertical Heterojunction. <i>Nano Letters</i> , 2020 , 20, 1080-1088	11.5	29
283	Ordinary microfluidic electrodes combined with bulk nanoprobe produce multidimensional electric double-layer capacitances towards metal ion recognition. <i>Sensors and Actuators B: Chemical</i> , 2020 , 305, 127482	8.5	7
282	The Rashba Scale: Emergence of Band Anti-crossing as a Design Principle for Materials with Large Rashba Coefficient. <i>Matter</i> , 2020 , 3, 145-165	12.7	9
281	Dual topological insulator device with disorder robustness. <i>Physical Review B</i> , 2020 , 102,	3.3	6
280	Inverse design of compounds that have simultaneously ferroelectric and Rashba cofunctionality. <i>Physical Review B</i> , 2020 , 102,	3.3	6
279	Simulations of X-ray absorption spectroscopy and energetic conformation of N-heterocyclic carbenes on Au(111). <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 21504-21511	3.6	O
278	The 2021 quantum materials roadmap. <i>JPhys Materials</i> , 2020 , 3, 042006	4.2	48
277	Zeeman-type spin splitting in nonmagnetic three-dimensional compounds. <i>Npj Quantum Materials</i> , 2019 , 4,	5	13
276	Metal Chalcogenides Janus Monolayers for Efficient Hydrogen Generation by Photocatalytic Water Splitting. <i>ACS Applied Nano Materials</i> , 2019 , 2, 890-897	5.6	40
275	Spin-Polarization Control Driven by a Rashba-Type Effect Breaking the Mirror Symmetry in Two-Dimensional Dual Topological Insulators. <i>Physical Review Letters</i> , 2019 , 122, 036401	7.4	15
274	Theoretical and Experimental Investigation of 2D Hematite. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 16359-16365	3.8	9
273	Electronic transport properties of MoS nanoribbons embedded in butadiene solvent. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 11359-11366	3.6	5
272	Decreasing Nanocrystal Structural Disorder by Ligand Exchange: An Experimental and Theoretical Analysis. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 1471-1476	6.4	9
271	From DFT to machine learning: recent approaches to materials science review. <i>JPhys Materials</i> , 2019 , 2, 032001	4.2	206

270	Toward Realistic Amorphous Topological Insulators. <i>Nano Letters</i> , 2019 , 19, 8941-8946	11.5	19
269	The role played by the molecular geometry on the electronic transport through nanometric organic films. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 24584-24591	3.6	2
268	Structural evolution and the role of native defects in subnanometer MoS nanowires. <i>Physical Review B</i> , 2019 , 100,	3.3	4
267	Oxidation of Ni13 clusters. <i>International Journal of Quantum Chemistry</i> , 2019 , 119, e25874	2.1	4
266	Semiclassical transport properties of IrGa: a promising thermoelectric material. <i>Journal of Physics Condensed Matter</i> , 2018 , 30, 085701	1.8	4
265	Nanoporous ZnO: Structural and electronic study under biaxial strain. <i>Computational Materials Science</i> , 2018 , 149, 91-97	3.2	
264	Tight-binding model for the band dispersion in rhombohedral topological insulators over the whole Brillouin zone. <i>Physical Review B</i> , 2018 , 98,	3.3	6
263	Layer-dependent band alignment of few layers of blue phosphorus and their van der Waals heterostructures with graphene. <i>Physical Review B</i> , 2018 , 97,	3.3	34
262	Silicene-Based FET for Logical Technology. <i>IEEE Electron Device Letters</i> , 2018 , 39, 1258-1261	4.4	7
261	Controlling Topological States in Topological/Normal Insulator Heterostructures. <i>ACS Omega</i> , 2018 , 3, 15900-15906	3.9	5
260	Band gap tuning of layered III-Te materials. <i>Journal of Applied Physics</i> , 2018 , 124, 045104	2.5	3
259	Oxidation of free-standing and supported borophene. 2D Materials, 2017, 4, 025025	5.9	26
258	Stacking-dependent transport properties in few-layers graphene. <i>Solid State Communications</i> , 2017 , 250, 70-74	1.6	8
257	Adsorption of 3d, 4d, and 5d transition metal atoms on Borophene. <i>Journal of Physics Condensed Matter</i> , 2017 , 29, 305302	1.8	9
256	Tuning the p-type Schottky barrier in 2D metal/semiconductor interface:boron-sheet on MoSe, and WSe. <i>Journal of Physics Condensed Matter</i> , 2017 , 29, 405002	1.8	3
255	Nanodots of transition metal dichalcogenides embedded in MoS and MoSe: first-principles calculations. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 26240-26247	3.6	
254	Dynamic covalent bond from first principles: Diarylbibenzofuranone structural, electronic, and oxidation studies. <i>Journal of Computational Chemistry</i> , 2017 , 38, 2675-2679	3.5	3
253	Novel III-Tegraphene van der Waals heterojunctions for optoelectronic devices. <i>RSC Advances</i> , 2017 , 7, 32383-32390	3.7	6

252	Two-dimensional van der Waals p-n junction of InSe/phosphorene. <i>Physical Review B</i> , 2017 , 95,	3.3	47
251	Directional dependence of the electronic and transport properties of 2D borophene and borophane. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 25491-25496	3.6	77
250	Fully and partially iodinated germanane as a platform for the observation of the quantum spin Hall effect. <i>Physical Review B</i> , 2016 , 93,	3.3	13
249	Unconventional spin texture in a noncentrosymmetric quantum spin Hall insulator. <i>Physical Review B</i> , 2016 , 94,	3.3	11
248	Substrate-supported large-band-gap quantum spin Hall insulator based on III-V bismuth layers. <i>Physical Review B</i> , 2016 , 94,	3.3	1
247	A new class of large band gap quantum spin hall insulators: 2D fluorinated group-IV binary compounds. <i>Scientific Reports</i> , 2016 , 6, 26123	4.9	13
246	On the nature of the solvated electron in ice Ih. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 4652-8	3.6	6
245	Topological states of nanoscale Bi2Se3 interfaced with AlN. <i>Applied Physics Letters</i> , 2016 , 109, 131601	3.4	4
244	Vertical twinning of the Dirac cone at the interface between topological insulators and semiconductors. <i>Nature Communications</i> , 2015 , 6, 7630	17.4	22
243	Tuning the thermoelectric properties of a single-molecule junction by mechanical stretching. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 5386-92	3.6	11
242	Topological phase transitions of (BixSb1-x)2Se3 alloys by density functional theory. <i>Journal of Physics Condensed Matter</i> , 2015 , 27, 255501	1.8	9
241	Valley Hall effect in silicene and hydrogenated silicene ruled by grain boundaries: An ab initio investigation. <i>Physical Review B</i> , 2015 , 91,	3.3	8
240	Van der Waals heterostructure of phosphorene and graphene: tuning the Schottky barrier and doping by electrostatic gating. <i>Physical Review Letters</i> , 2015 , 114, 066803	7.4	372
239	Switching a normal insulator into a topological insulator via electric field with application to phosphorene. <i>Nano Letters</i> , 2015 , 15, 1222-8	11.5	343
238	Size- effect induced high thermoelectric figure of merit in PbSe and PbTe nanowires. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 8114-8	3.6	11
237	Directional Control of the Electronic and Transport Properties of Graphynes. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 18793-18798	3.8	16
236	Quantum spin Hall effect on germanene nanorod embedded in completely hydrogenated germanene. <i>Physical Review B</i> , 2014 , 89,	3.3	46
235	First-principles study of HgTe/CdTe heterostructures under perturbations preserving time-reversal symmetry. <i>Physical Review B</i> , 2014 , 90,	3.3	9

234	Spin caloritronics in graphene with Mn. Applied Physics Letters, 2014, 104, 072412	3.4	15
233	Topological phases in triangular lattices of Ru adsorbed on graphene: Ab initio calculations. <i>Physical Review B</i> , 2014 , 89,	3.3	23
232	Graphene on amorphous HfO2 surface: An ab initio investigation. <i>Physical Review B</i> , 2013 , 87,	3.3	11
231	Graphene nanoribbon intercalated with hexagonal boron nitride: Electronic transport properties from ab initio calculations. <i>Solid State Communications</i> , 2013 , 173, 24-29	1.6	10
230	Topological insulator Bi2Se3(111) surface doped with transition metals: An ab initio investigation. <i>Physical Review B</i> , 2013 , 88,	3.3	46
229	Electronic transport in patterned graphene nanoroads. <i>Nanotechnology</i> , 2013 , 24, 495201	3.4	8
228	Quantum spin Hall effect in a disordered hexagonal SixGe1 alloy. <i>Physical Review B</i> , 2013 , 88,	3.3	21
227	Topological states ruled by stacking faults in Bi2Se3 and Bi2Te3. <i>Journal of Applied Physics</i> , 2013 , 113, 023705	2.5	19
226	Confinement effects and why carbon nanotube bundles can work as gas sensors. <i>Nanoscale</i> , 2013 , 5, 2798-803	7.7	22
225	First-principles study of group III impurity doped PbSe: Bulk and nanowire. <i>Physical Review B</i> , 2013 , 87,	3.3	6
224	Carrier-mediated magnetism in transition metal doped BiBeltopological insulator. <i>Journal of Physics Condensed Matter</i> , 2013 , 25, 445003	1.8	5
223	Interfaces between buckling phases in silicene: Ab initio density functional theory calculations. <i>Physical Review B</i> , 2013 , 88,	3.3	10
222	Consideralls sobre o Programa Brasileiro de Nanotecnologia. <i>Cilicia E Cultura</i> , 2013 , 65, 23-27	0.3	1
221	Tuning Low-Spin to High-Spin Mn Pairs in 2-D ZnO by Injecting Holes. <i>IEEE Nanotechnology Magazine</i> , 2012 , 11, 71-76	2.6	O
220	Bilayer graphene on h-BN substrate: investigating the breakdown voltage and tuning the bandgap by electric field. <i>Journal of Physics Condensed Matter</i> , 2012 , 24, 075301	1.8	15
219	Light emission and current rectification in a molecular device: Experiment and theory. <i>Journal of Applied Physics</i> , 2012 , 112, 113108	2.5	
218	Ab-initio calculations for a realistic sensor: A study of CO sensors based on nitrogen-rich carbon nanotubes. <i>AIP Advances</i> , 2012 , 2, 032115	1.5	4
217	Piezomagnetic behavior of Co-doped ZnO nanoribbons. <i>Physical Review B</i> , 2011 , 84,	3.3	5

216	Doping of graphene adsorbed on the a-SiO2 surface. <i>Applied Physics Letters</i> , 2011 , 99, 163108	3.4	43
215	Mn dimers on graphene nanoribbons: An ab initio study. <i>Journal of Applied Physics</i> , 2011 , 109, 053715	2.5	14
214	Quantum confinement and spin-orbit interactions in PbSe and PbTe nanowires: First-principles calculation. <i>Physical Review B</i> , 2011 , 84,	3.3	9
213	Bilayer graphene dual-gate nanodevice: An ab initio simulation. <i>Physical Review B</i> , 2011 , 84,	3.3	29
212	Spin filtering and disorder-induced magnetoresistance in carbon nanotubes: Ab initio calculations. <i>Physical Review B</i> , 2011 , 84,	3.3	13
211	Spin texture and magnetic anisotropy of Co impurities in Bi2Se3 topological insulators. <i>Physical Review B</i> , 2011 , 84,	3.3	45
210	Electronic transport properties of ascorbic acid and nicotinamide adsorbed on single-walled carbon nanotubes. <i>Chemical Physics Letters</i> , 2011 , 506, 233-238	2.5	10
209	IxV curves of boron and nitrogen doping zigzag graphene nanoribbons. <i>International Journal of Quantum Chemistry</i> , 2011 , 111, 1379-1386	2.1	16
208	Adatoms in graphene as a source of current polarization: Role of the local magnetic moment. <i>Physical Review B</i> , 2011 , 84,	3.3	25
207	Ab initio calculations of structural evolution and conductance of benzene-1,4-dithiol on gold leads. <i>ACS Nano</i> , 2011 , 5, 795-804	16.7	83
206	Energetics and stability of vacancies in carbon nanotubes. <i>Solid State Communications</i> , 2011 , 151, 482-4	186 6	37
205	Mn-doped cubic BN as an atomiclike memory device: A density functional study. <i>Physical Review B</i> , 2010 , 81,	3.3	2
204	Splitting of the zero-energy edge states in bilayer graphene. <i>Physical Review B</i> , 2010 , 81,	3.3	12
203	Disorder-based graphene spintronics. <i>Nanotechnology</i> , 2010 , 21, 345202	3.4	27
202	Origin of FM ordering in pristine micro- and nanostructured ZnO. <i>Nano Letters</i> , 2010 , 10, 1383-6	11.5	92
201	Ferromagnetic coupling in a Co-doped graphenelike ZnO sheet. <i>Physical Review B</i> , 2010 , 81,	3.3	54
200	Mimicking nanoribbon behavior using a graphene layer on SiC. Physical Review B, 2010, 82,	3.3	8

198	Formation of atomic carbon chains from graphene nanoribbons. <i>Physical Review B</i> , 2010 , 81,	3.3	50
197	Realistic calculations of carbon-based disordered systems. <i>Journal Physics D: Applied Physics</i> , 2010 , 43, 374002	3	18
196	Organic molecule assembled between carbon nanotubes: A highly efficient switch device. <i>Physical Review B</i> , 2009 , 79,	3.3	34
195	Point defects in covalent semiconductors: A molecular cluster model. <i>International Journal of Quantum Chemistry</i> , 2009 , 16, 349-361	2.1	1
194	The variational cellular method for quantum mechanical applications: Calculations of the ground and excited states of F2 and Ne2 molecules. <i>International Journal of Quantum Chemistry</i> , 2009 , 20, 401-	4 0 8	
193	MS-X\textit{HTreatment for native defects in GaSb. International Journal of Quantum Chemistry, 2009 , 20, 457-4	15.71	
192	Native defects and transition metal impurities at interstitial sites in gaas. <i>International Journal of Quantum Chemistry</i> , 2009 , 36, 677-685	2.1	
191	Metal-semiconductor transition in cerium hydrides. <i>International Journal of Quantum Chemistry</i> , 2009 , 36, 709-716	2.1	
190	Surface magnetization in non-doped ZnO nanostructures. <i>Applied Physics Letters</i> , 2009 , 94, 162503	3.4	67
189	Electronic, structural, and transport properties of Ni-doped graphene nanoribbons. <i>Physical Review B</i> , 2009 , 79,	3.3	130
188	Effects of side-chain and electron exchange correlation on the band structure of perylene diimide liquid crystals: a density functional study. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 5376-80	3.4	10
187	Edge effects in bilayer graphene nanoribbons: Ab initio total-energy density functional theory calculations. <i>Physical Review B</i> , 2009 , 79,	3.3	54
186	Barrier-free substitutional doping of graphene sheets with boron atoms: Ab initio calculations. <i>Physical Review B</i> , 2009 , 79,	3.3	57
185	Theoretical investigation of Hf and Zr defects in c-Ge. <i>Journal of Physics Condensed Matter</i> , 2009 , 21, 012206	1.8	
184	Quantum confinement effects on Mn-doped InAs nanocrystals: A first-principles study. <i>Physical Review B</i> , 2008 , 78,	3.3	17
183	Hydrogen adsorption on boron doped graphene: an ab initio study. <i>Nanotechnology</i> , 2008 , 19, 155708	3.4	80
182	First-principles study of the adsorption of atomic and molecular hydrogen on BC2N nanotubes. <i>Physical Review B</i> , 2008 , 77,	3.3	29
181	sigma- and pi-defects at graphene nanoribbon edges: building spin filters. <i>Nano Letters</i> , 2008 , 8, 2293-8	11.5	94

180	Confinement and surface effects in B and P doping of silicon nanowires. <i>Nano Letters</i> , 2008 , 8, 1866-71	11.5	53
179	Electronic and Magnetic Properties of Ti and Fe on Graphene. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 9163-9167	3.8	83
178	Ab Initio Study of SO2 Molecules Interacting with Pristine and Transition Metal Covered Fullerenes as a Possible Route for Nanofilters. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 6677-6680	3.8	4
177	Symmetry controlled spin polarized conductance in au nanowires. <i>Journal of the American Chemical Society</i> , 2008 , 130, 9897-903	16.4	20
176	Designing real nanotube-based gas sensors. <i>Physical Review Letters</i> , 2008 , 100, 176803	7.4	95
175	Amorphous HfO2 and Hf1\(\mathbb{R}\)sixO via a melt-and-quench scheme using ab initio molecular dynamics. <i>Physical Review B</i> , 2008 , 77,	3.3	39
174	Transport properties of single vacancies in nanotubes. <i>Physical Review B</i> , 2008 , 77,	3.3	32
173	Temperature and quantum effects in the stability of pure and doped gold nanowires. <i>Physical Review Letters</i> , 2008 , 100, 056104	7.4	29
172	Divacancies in graphene and carbon nanotubes. <i>Nano Letters</i> , 2007 , 7, 2459-62	11.5	151
171	Si nanowires as sensors: choosing the right surface. <i>Nano Letters</i> , 2007 , 7, 1172-7		
		11.5	37
170	Electronic and transport properties of boron-doped graphene nanoribbons. <i>Physical Review Letters</i> , 2007 , 98, 196803	7.4	502
170 169	Electronic and transport properties of boron-doped graphene nanoribbons. <i>Physical Review Letters</i> ,		
·	Electronic and transport properties of boron-doped graphene nanoribbons. <i>Physical Review Letters</i> , 2007 , 98, 196803 Adsorption of CO and NO molecules on carbon doped boron nitride nanotubes. <i>Solid State</i>	7.4	502
169	Electronic and transport properties of boron-doped graphene nanoribbons. <i>Physical Review Letters</i> , 2007 , 98, 196803 Adsorption of CO and NO molecules on carbon doped boron nitride nanotubes. <i>Solid State Communications</i> , 2007 , 142, 49-53 First principles study of titanium-coated carbon nanotubes as sensors for carbon monoxide	7.4	502 96
169 168	Electronic and transport properties of boron-doped graphene nanoribbons. <i>Physical Review Letters</i> , 2007 , 98, 196803 Adsorption of CO and NO molecules on carbon doped boron nitride nanotubes. <i>Solid State Communications</i> , 2007 , 142, 49-53 First principles study of titanium-coated carbon nanotubes as sensors for carbon monoxide molecules. <i>Surface Science</i> , 2007 , 601, 4102-4104 Ab initio study of 2,3,7,8-tetrachlorinated dibenzo-p-dioxin adsorption on single wall carbon	7·4 1.6	502 96 22
169 168 167	Electronic and transport properties of boron-doped graphene nanoribbons. <i>Physical Review Letters</i> , 2007 , 98, 196803 Adsorption of CO and NO molecules on carbon doped boron nitride nanotubes. <i>Solid State Communications</i> , 2007 , 142, 49-53 First principles study of titanium-coated carbon nanotubes as sensors for carbon monoxide molecules. <i>Surface Science</i> , 2007 , 601, 4102-4104 Ab initio study of 2,3,7,8-tetrachlorinated dibenzo-p-dioxin adsorption on single wall carbon nanotubes. <i>Chemical Physics Letters</i> , 2007 , 437, 79-82 Ab initio study of pristine and Si-doped capped carbon nanotubes interacting with nimesulide	7·4 1.6 1.8	502 96 22 34
169 168 167 166	Electronic and transport properties of boron-doped graphene nanoribbons. <i>Physical Review Letters</i> , 2007 , 98, 196803 Adsorption of CO and NO molecules on carbon doped boron nitride nanotubes. <i>Solid State Communications</i> , 2007 , 142, 49-53 First principles study of titanium-coated carbon nanotubes as sensors for carbon monoxide molecules. <i>Surface Science</i> , 2007 , 601, 4102-4104 Ab initio study of 2,3,7,8-tetrachlorinated dibenzo-p-dioxin adsorption on single wall carbon nanotubes. <i>Chemical Physics Letters</i> , 2007 , 437, 79-82 Ab initio study of pristine and Si-doped capped carbon nanotubes interacting with nimesulide molecules. <i>Chemical Physics Letters</i> , 2007 , 439, 348-353 Simple implementation of complex functionals: scaled self-consistency. <i>Journal of Chemical Physics</i> ,	7.4 1.6 1.8 2.5	50296223434

162	Hf defects in cBi and their importance for the HfO2Bi interface: Density-functional calculations. <i>Physical Review B</i> , 2007 , 75,	3.3	4
161	EL2-like defects in InP nanowires: An ab initio total energy investigation. <i>Physical Review B</i> , 2007 , 75,	3.3	6
160	Structural, electronic, and magnetic properties of Mn-doped Ge nanowires by ab initio calculations. <i>Physical Review B</i> , 2007 , 75,	3.3	16
159	Short linear atomic chains in copper nanowires. <i>Nanotechnology</i> , 2007 , 18, 145701	3.4	30
158	Gold nanowires and the effect of impurities. Nanoscale Research Letters, 2006, 1, 91-98	5	16
157	Titanium monomers and wires adsorbed on carbon nanotubes: a first principles study. <i>Nanotechnology</i> , 2006 , 17, 1154-9	3.4	22
156	Orientational defects in ice Ih: an interpretation of electrical conductivity measurements. <i>Physical Review Letters</i> , 2006 , 96, 075501	7.4	34
155	Structure and energetics of molecular point defects in ice Ih. <i>Physical Review Letters</i> , 2006 , 97, 155501	7.4	21
154	Electronic and magnetic properties of Mn-doped InP nanowires from first principles. <i>Physical Review B</i> , 2006 , 73,	3.3	27
153	Oxygen clamps in gold nanowires. <i>Physical Review Letters</i> , 2006 , 96, 016104	7.4	60
152	Hydrogen adsorption on carbon-doped boron nitride nanotube. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 21184-8	3.4	89
151	C59Si on the monohydride Si(100):H-(2 x 1) surface. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 10849-54	13.4	8
150	Adsorption of benzene-1,4-dithiol on the Au(111) surface and its possible role in molecular conductance. <i>Journal of the American Chemical Society</i> , 2006 , 128, 8996-7	16.4	63
149	First principles calculations of as impurities in the presence of a 90 th partial dislocation in Si. <i>Brazilian Journal of Physics</i> , 2006 , 36, 261-263	1.2	6
148	Density functional theory method for non-equilibrium charge transport calculations: TRANSAMPA. <i>Brazilian Journal of Physics</i> , 2006 , 36, 799-807	1.2	51
147	Phenomenological band structure model of magnetic coupling in semiconductors. <i>Solid State Communications</i> , 2006 , 138, 353-358	1.6	117
146	Silicon adsorption in defective carbon nanotubes: a first principles study. <i>Nanotechnology</i> , 2006 , 17, 408	38 . 91	4
145	Stability and electronic confinement of free-standing InP nanowires: Ab initio calculations. <i>Physical Review B</i> , 2005 , 72,	3.3	35

144	Bundling up carbon nanotubes through Wigner defects. <i>Nano Letters</i> , 2005 , 5, 1045-9	11.5	32
143	Vacancy formation process in carbon nanotubes: first-principles approach. <i>Nano Letters</i> , 2005 , 5, 197-20	0 0 1.5	72
142	Carbon nanotube adsorbed on hydrogenated Si(001) surfaces. <i>Applied Surface Science</i> , 2005 , 244, 124-1	1 2 187	5
141	Computer simulations in the study of gold nanowires: the effect of impurities. <i>Applied Physics A: Materials Science and Processing</i> , 2005 , 81, 1551-1558	2.6	15
140	Electronic and structural properties of C59Si on the monohydride Si(100) surface. <i>International Journal of Quantum Chemistry</i> , 2005 , 103, 557-561	2.1	2
139	Comment on "contaminants in suspended gold chains: an Ab initio molecular dynamics study.". <i>Physical Review Letters</i> , 2005 , 95, 169601; author reply 169602	7.4	11
138	Disorder and the effective MnMn exchange interaction in Ga1MnxAs diluted magnetic semiconductors. <i>Physical Review B</i> , 2005 , 72,	3.3	13
137	Oxygen-induced atomic desorptions in oxynitrides: Density functional calculations. <i>Physical Review B</i> , 2005 , 72,	3.3	5
136	Substrate-dependent electronic properties of an armchair carbon nanotube adsorbed on HBi(001). <i>Applied Physics Letters</i> , 2005 , 86, 213111	3.4	33
135	Formation energy of native defects in BN nanotubes: anab initiostudy. <i>Nanotechnology</i> , 2005 , 16, 827-8	3314	69
134	Anab initiostudy of manganese atoms and wires interacting with carbon nanotubes. <i>Journal of Physics Condensed Matter</i> , 2004 , 16, 3647-3661	1.8	15
133	Stabilization of substitutional Mn in silicon-based semiconductors. <i>Physical Review B</i> , 2004 , 70,	3.3	38
132	Initial stages of Ge and Si growth near SB monoatomic steps on Si(100). <i>Physical Review B</i> , 2004 , 70,	3.3	3
131	Theoretical study of the formation, evolution, and breaking of gold nanowires. <i>Physical Review B</i> , 2004 , 69,	3.3	101
130	Carbon in SixGe1⊠: An ab initio investigation. <i>Physical Review B</i> , 2004 , 69,	3.3	8
129	Diffusion-reaction mechanisms of nitriding species in SiO2. <i>Physical Review B</i> , 2004 , 70,	3.3	20
128	Adsorption of Mn atoms on the Si(1 0 0) surface. Surface Science, 2004, 566-568, 688-692	1.8	9
127	Stability and electronic properties of carbon nanotubes adsorbed on Si(0 0 1). <i>Surface Science</i> , 2004 , 566-568, 728-732	1.8	15

126	Effect of impurities on the breaking of Au nanowires. Surface Science, 2004, 566-568, 367-371	1.8	6
125	Substitutional Si Doping in Deformed Carbon Nanotubes. <i>Nano Letters</i> , 2004 , 4, 975-977	11.5	38
124	First principles study of the ferromagnetism in Ga1lkMnxAs semiconductors. <i>Journal of Physics Condensed Matter</i> , 2004 , 16, 8243-8250	1.8	15
123	Comparative study of defect energetics in HfO2 and SiO2. <i>Applied Physics Letters</i> , 2004 , 84, 1492-1494	3.4	102
122	Breaking of gold nanowires. Computational Materials Science, 2004, 30, 73-76	3.2	18
121	On the reversibility of hydrogen effects on the properties of amorphous silicon carbide. <i>Journal of Non-Crystalline Solids</i> , 2004 , 338-340, 299-302	3.9	4
120	Vacancy-like defects in a-Si: a first principles study. <i>Journal of Non-Crystalline Solids</i> , 2004 , 338-340, 400-	-4,032	9
119	First-principles calculations of carbon nanotubes adsorbed on Si(001). <i>Physical Review Letters</i> , 2003 , 91, 166802	7.4	50
118	Electronic structure and origin of ferromagnetism in Ga1MMnxAs semiconductors. <i>Physica B: Condensed Matter</i> , 2003 , 340-342, 874-877	2.8	9
117	Energetics and structural properties of adsorbed atoms and molecules on silicon-doped carbon nanotubes. <i>Materials Characterization</i> , 2003 , 50, 183-187	3.9	23
116	Fe and Mn atoms interacting with carbon nanotubes. <i>Physica B: Condensed Matter</i> , 2003 , 340-342, 982-9)8 58	19
115	Electronic and magnetic properties of iron chains on carbon nanotubes. <i>Microelectronics Journal</i> , 2003 , 34, 481-484	1.8	32
114	Theoretical study of native defects in BN nanotubes. <i>Physical Review B</i> , 2003 , 67,	3.3	143
113	Oxidation at the Si/SiO2 interface: influence of the spin degree of freedom. <i>Physical Review Letters</i> , 2003 , 90, 016103	7.4	29
112	Ab initio study of an iron atom interacting with single-wall carbon nanotubes. <i>Physical Review B</i> , 2003 , 67,	3.3	94
111	Ab initio study of an organic molecule interacting with a silicon-doped carbon nanotube. <i>Diamond and Related Materials</i> , 2003 , 12, 861-863	3.5	17
110	Effect of impurities in the large Au-Au distances in gold nanowires. <i>Physical Review Letters</i> , 2003 , 90, 036101	7.4	69
109	Theoretical investigation of extended defects and their interactions with vacancies in SixGe1 \blacksquare . <i>Physical Review B</i> , 2003 , 67,	3.3	4

(2001-2003)

108	Theoretical investigation of a possible MnxSi1⊠ ferromagnetic semiconductor. <i>Physical Review B</i> , 2003 , 68,	3.3	42
107	Theoretical and experimental studies of the atomic structure of oxygen-rich amorphous silicon oxynitride films. <i>Physical Review B</i> , 2003 , 68,	3.3	8
106	Functionalization of carbon nanotubes through the chemical binding of atoms and molecules. <i>Physical Review B</i> , 2003 , 67,	3.3	63
105	Interaction of As impurities with 30½ partial dislocations in Si: An ab initio investigation. <i>Journal of Applied Physics</i> , 2002 , 91, 5892-5895	2.5	13
104	Structural order and clustering in annealed B iC and B iC:H. <i>Physical Review B</i> , 2002 , 65,	3.3	20
103	Ab initio calculations of vacancies in SixGe1\(\text{L. Applied Physics Letters, 2002}, 81, 3383-3385	3.4	14
102	First-principles investigation of aBiNx:H. <i>Physical Review B</i> , 2002 , 65,	3.3	37
101	Arsenic segregation, pairing and mobility on the cores of partial dislocations in silicon. <i>Journal of Physics Condensed Matter</i> , 2002 , 14, 12761-12765	1.8	5
100	Vacancy-mediated diffusion in disordered alloys: Ge self-diffusion in Si1⊠Gex. <i>Physical Review B</i> , 2002 , 65,	3.3	30
99	Defect centers in a-SiNx: electronic and structural properties. <i>Brazilian Journal of Physics</i> , 2002 , 32, 436	5-4:3:8	4
98	Ab initio calculations on the compensation mechanisms in InP. <i>Solid State Communications</i> , 2001 , 117, 353-355	1.6	
97			
21	Dislocation core properties in semiconductors. Solid State Communications, 2001, 118, 651-655	1.6	22
96	Dislocation core properties in semiconductors. <i>Solid State Communications</i> , 2001 , 118, 651-655 Theoretical investigation of the pressure induced cubic-diamond-Etin phase transition in the Si0.5Ge0.5. <i>Solid State Communications</i> , 2001 , 120, 369-373	1.6	18
	Theoretical investigation of the pressure induced cubic-diamond-Etin phase transition in the		
96	Theoretical investigation of the pressure induced cubic-diamond-Etin phase transition in the Si0.5Ge0.5. <i>Solid State Communications</i> , 2001 , 120, 369-373	1.6	18
96 95	Theoretical investigation of the pressure induced cubic-diamond-Etin phase transition in the Si0.5Ge0.5. <i>Solid State Communications</i> , 2001 , 120, 369-373 Native defects in germanium. <i>Physica B: Condensed Matter</i> , 2001 , 302-303, 364-368 The energetics of dislocation cores in semiconductors and their role on dislocation mobility. <i>Physica</i>	2.8	18
96 95 94	Theoretical investigation of the pressure induced cubic-diamond-Etin phase transition in the Si0.5Ge0.5. <i>Solid State Communications</i> , 2001 , 120, 369-373 Native defects in germanium. <i>Physica B: Condensed Matter</i> , 2001 , 302-303, 364-368 The energetics of dislocation cores in semiconductors and their role on dislocation mobility. <i>Physica B: Condensed Matter</i> , 2001 , 302-303, 398-402 Segregation of dopant atoms on extended defects in semiconductors. <i>Physica B: Condensed Matter</i> ,	2.8 2.8	18 6 3

90	O2 diffusion in SiO2: triplet versus singlet. <i>Physical Review Letters</i> , 2001 , 87, 155901	7.4	29
89	Adsorption of monomers on semiconductors and the importance of surface degrees of freedom. <i>Physical Review B</i> , 2001 , 63,	3.3	8
88	Stacking fault effects in pure and n-type doped GaAs. <i>Applied Physics Letters</i> , 2001 , 78, 907-909	3.4	10
87	Ab initio determination of the atomistic structure of SixGe1⊠ alloy. <i>Physical Review B</i> , 2001 , 64,	3.3	56
86	Formation and structural properties of the amorphous-crystal interface in a nanocrystalline system. <i>Physical Review B</i> , 2001 , 64,	3.3	16
85	Two-atom structures of Ge on Si(100): dimers versus adatom pairs. <i>Physical Review Letters</i> , 2001 , 87, 036104	7.4	5
84	Influence of surface degrees of freedom on the adsorption of Ge ad-atoms on Si(1 0 0). <i>Computational Materials Science</i> , 2001 , 22, 19-23	3.2	
83	Ab initio studies of the Si1⊠Gex alloy and its intrinsic defects. <i>Computational Materials Science</i> , 2001 , 22, 62-66	3.2	1
82	How do gold nanowires break?. <i>Physical Review Letters</i> , 2001 , 87, 256102	7.4	191
81	The effect of a stacking fault on the electronic properties of dopants in gallium arsenide. <i>Journal of Physics Condensed Matter</i> , 2000 , 12, 10235-10239	1.8	4
80	Dislocation core reconstruction in zinc-blende semiconductors. <i>Journal of Physics Condensed Matter</i> , 2000 , 12, 10039-10044	1.8	14
79	Microscopic picture of the single vacancy in germanium. <i>Physical Review B</i> , 2000 , 61, R2401-R2404	3.3	72
78	Self-interstitial defect in germanium. <i>Physical Review B</i> , 2000 , 62, 9903-9906	3.3	50
77	Ab initio calculations for a hypothetical material: Silicon nanotubes. <i>Physical Review B</i> , 2000 , 61, 9994-9	9 <u>9</u> .6	209
76	Point defect interactions with extended defects in semiconductors. <i>Physical Review B</i> , 1999 , 60, 4711-4	7 3.4	29
75	[PIn](n) antisite clustering in InP. <i>Physical Review B</i> , 1999 , 60, 16475-16478	3.3	6
74	Concerted-exchange mechanism for antistructure pair defects in GaAs. <i>Solid State Communications</i> , 1999 , 110, 457-461	1.6	4
73	Intrinsic doping in InP: ab initio calculations of PIn antisites. <i>Physica B: Condensed Matter</i> , 1999 , 273-274, 831-834	2.8	3

72	Effects of extended defects on the properties of intrinsic and extrinsic point defects in silicon. <i>Physica B: Condensed Matter</i> , 1999 , 273-274, 473-475	2.8	18
71	Electronic and structural properties of vacancy and self-interstitial defects in germanium. <i>Physica B: Condensed Matter</i> , 1999 , 273-274, 575-578	2.8	17
70	Initial stages of Ge growth on Si(100): ad-atoms, ad-dimers, and ad-trimers. <i>Physica B: Condensed Matter</i> , 1999 , 273-274, 589-592	2.8	10
69	Hydrogen role on the properties of amorphous silicon nitride. <i>Journal of Applied Physics</i> , 1999 , 86, 1843	-1847	73
68	Structural and electronic properties of silicon nitride materials. <i>International Journal of Quantum Chemistry</i> , 1998 , 70, 973-980	2.1	21
67	Electronic and structural trends in small GaAs clusters. <i>Scripta Materialia</i> , 1998 , 10, 635-647		32
66	Ab initio study of group V elements in amorphous silicon. <i>Journal of Non-Crystalline Solids</i> , 1998 , 227-230, 372-375	3.9	
65	Optical Transitions in Ruby across the Corundum to Rh2O3 (II) Phase Transformation. <i>Physical Review Letters</i> , 1998 , 81, 3267-3270	7.4	35
64	Structural properties of amorphous silicon nitride. <i>Physical Review B</i> , 1998 , 58, 8323-8328	3.3	127
63	Theoretical study of defect complexes related with antisites in GaAs. <i>Radiation Effects and Defects in Solids</i> , 1998 , 146, 65-70	0.9	1
62	Theoretical studies of native defects in cubic boron nitride. <i>Physical Review B</i> , 1997 , 56, 3556-3559	3.3	26
61	Defect complexes in GaAs: First-principles calculations. <i>Physical Review B</i> , 1997 , 56, 13073-13076	3.3	10
60	Electronic and structural properties of defects in c-BN. <i>International Journal of Quantum Chemistry</i> , 1997 , 65, 941-946	2.1	
59	Impurity states in the narrow band-gap semiconductor n-type InSb. <i>Solid State Communications</i> , 1996 , 99, 295-297	1.6	1
58	Germanium negative-U center in GaAs. <i>Physical Review B</i> , 1996 , 53, 1315-1321	3.3	10
57	Ab Initio Study of N Impurity in Amorphous Germanium. <i>Physical Review Letters</i> , 1996 , 77, 546-549	7.4	8
56	Electronic structure of periodically Si-Edoped GaAs. <i>International Journal of Quantum Chemistry</i> , 1995 , 56, 203-206	2.1	
55	Metalihsulator transition in fullerides: K3C60 versus Na3C60. <i>International Journal of Quantum Chemistry</i> , 1995 , 56, 217-219	2.1	1

54	Carbon doping of GaAs: Compensation effects. <i>Applied Physics Letters</i> , 1995 , 66, 2715-2717	3.4	6
53	Ab initio calculation of electronic properties of periodically Si- delta -doped GaAs. <i>Physical Review B</i> , 1995 , 51, 7898-7900	3.3	7
52	CLUSTER CALCULATION OF THE ELECTRONIC STRUCTURE OF K3C60. <i>Modern Physics Letters B</i> , 1995 , 09, 95-101	1.6	4
51	Structural and electronic studies of Ga3As3, Ga4As3, and Ga3As4. <i>International Journal of Quantum Chemistry</i> , 1994 , 52, 571-577	2.1	3
50	Studies of the local reactivity of surfaces using chemical based principles. <i>Surface Science</i> , 1994 , 313, 41-51	1.8	6
49	Theoretical investigation of the electronic structure and absorption spectra of carbon cluster nanotubes. <i>Scripta Materialia</i> , 1994 , 4, 11-18		1
48	Role played by N and N-N impurities in type-IV semiconductors. <i>Physical Review B</i> , 1993 , 48, 17806-1781	9 .3	25
47	Electronic states induced by a Ga vacancy in the GaAs1NPx alloy. <i>International Journal of Quantum Chemistry</i> , 1993 , 48, 213-217	2.1	2
46	Ab Initio Cluster Calculation of Hyperfine Interactions and Total-Energy Surfaces for N in Diamond, Silicon and Germanium. <i>Materials Science Forum</i> , 1992 , 83-87, 463-468	0.4	3
45	Electronic and structural properties of N and N2 in type-IV semiconductors. <i>International Journal of Quantum Chemistry</i> , 1992 , 44, 667-672	2.1	1
44	Many-electron effects on the structural properties of sp impurities in semiconductors. <i>Solid State Communications</i> , 1992 , 82, 83-87	1.6	2
43	Theoretical investigation of the optical spectra of superconducting YBa2Cu3O7. <i>Solid State Communications</i> , 1991 , 78, 91-93	1.6	1
42	Investigation of the many-particle spectrum of superconductor YBa2Cu3O7. <i>Bulletin of Materials Science</i> , 1991 , 14, 989-992	1.7	
41	Correlation Effects in Native Defects in GaAs. <i>Materials Science Forum</i> , 1991 , 38-41, 119-124	0.4	6
40	AnionAntisite defects in GaAs: As and Sb. International Journal of Quantum Chemistry, 1990, 38, 563-567	2.1	3
39	Many-electron treatment for chalcogen complexes in silicon. <i>Semiconductor Science and Technology</i> , 1990 , 5, 196-199	1.8	
38	Anion-antisite-like defects in III-V compounds. <i>Physical Review Letters</i> , 1990 , 65, 2046-2049	7.4	48
37	The Cr2+ luminescence in GaAs as a function of hydrostatic pressure. <i>Solid State Communications</i> , 1989 , 69, 461-463	1.6	2

36	Charge stabilization of Cr at interstitial sites in GaAs. Solid State Communications, 1988, 66, 1031-1033	1.6	1
35	Intra-d excitations: Comparison between approaches for impurities in semiconductors. <i>Physical Review B</i> , 1988 , 37, 4770-4773	3.3	4
34	Analysis of pseudo-Jahn-Teller instability: O, S, and N- in silicon. <i>Physical Review B</i> , 1987 , 35, 6450-6453	3.3	2
33	Theory of interstitial transition atoms in GaAs. <i>Physical Review B</i> , 1987 , 36, 7542-7548	3.3	6
32	Progress in the study of transition metal impurities in III-V and II-VI materials. <i>International Journal of Quantum Chemistry</i> , 1987 , 32, 65-72	2.1	
31	On the possibility of negative U systems for transition metals impurities in semiconductors. <i>International Journal of Quantum Chemistry</i> , 1987 , 32, 73-78	2.1	1
30	Theoretical investigation of the electrical and optical activity of vanadium in GaAs. <i>Physical Review B</i> , 1986 , 33, 7102-7109	3.3	32
29	Many-electron treatment of the off-center substitutional O in Si. <i>Physical Review B</i> , 1986 , 33, 4432-4435	53.3	13
28	Excitation and ionization of Mo and W in GaAs. <i>Physical Review B</i> , 1986 , 34, 2690-2694	3.3	2
27	Defect-molecule parameters for the divacancy in silicon. <i>Solid State Communications</i> , 1985 , 53, 841-844	1.6	5
26	Electronic structure of copper, silver, and gold impurities in silicon. <i>Physical Review B</i> , 1985 , 32, 934-954	3.3	66
25	Theoretical model of the Au-Fe complex in silicon. <i>Physical Review B</i> , 1985 , 32, 8085-8091	3.3	18
24	Electronic structure of a single neutral ideal phosphorus vacancy in GaP. <i>Journal of Physics C: Solid State Physics</i> , 1984 , 17, 3423-3428		6
23	A universal trend in the binding energies of deep impurities in semiconductors. <i>Applied Physics Letters</i> , 1984 , 45, 671-673	3.4	229
22	Many-electron multiplet effects in the spectra of 3d impurities in heteropolar semiconductors. <i>Physical Review B</i> , 1984 , 30, 3430-3455	3.3	233
21	Separation of one- and many-electron effects in the excitation spectra of 3d impurities in semiconductors. <i>Physical Review B</i> , 1984 , 29, 5999-6002	3.3	46
20	Electronic structure calculation of V2+O2 complexes in silicon. <i>Solid State Communications</i> , 1984 , 49, 537-539	1.6	9
19	Many-electron multiplet effects in the optical spectra of NiO, CoO and MnO. <i>Solid State Communications</i> , 1984 , 52, 265-269	1.6	6

18	A molecular cluster study of complex defects in Si: The divacancy and the E center. <i>Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics,</i> 1983 , 116, 90-94		6
17	Electronic structure of oxygen in silicon. <i>Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics,</i> 1983 , 116, 106-111		6
16	Electronic structure of GaP:O via the MS-XEmethod. <i>Journal of Physics and Chemistry of Solids</i> , 1983 , 44, 349-351	3.9	2
15	A new model for the Si-A center 1983 , 102-107		
14	Multiple-scattering XImolecular-cluster model of complex defects in semiconductors: Application to Si:P2 and Si:P2+ systems. <i>Physical Review B</i> , 1982 , 25, 2603-2610	3.3	13
13	Electronic structure of neutral and negatively charged gallium vacancies in GaP. <i>Journal of Physics C: Solid State Physics</i> , 1982 , 15, L1-L3		13
12	Electronic structure calculation of Mn-doped GaAs. Solid State Communications, 1982, 44, 369-372	1.6	5
11	Theoretical Study of Single Vacancies in GaSb. <i>Physica Status Solidi (B): Basic Research</i> , 1981 , 105, 339-3	45 .3	4
10	Theoretical study of the F2molecule using the variational cellular method. <i>Journal of Physics B: Atomic and Molecular Physics</i> , 1981 , 14, L533-L535		4
9	Multiple scattering mass operator method for molecular orbital calculations. <i>International Journal of Quantum Chemistry</i> , 1980 , 18, 1165-1173	2.1	1
8	Theoretical Study of the Si-A Centre. Physica Status Solidi (B): Basic Research, 1980, 98, K109-K111	1.3	11
7	A simple way of eliminating the \(\frac{1}{2}\)xchange parameter in the multiple scattering method\(\Delta Solid\) State Communications, 1980 , 35, 329-331	1.6	1
6	Electronic structure of Cu, Ni, Co, and Fe substitutional impurities in gallium arsenide. <i>Physical Review B</i> , 1980 , 21, 4710-4720	3.3	64
5	Study of the muffin-tin approximation in the multiple-scattering method. <i>International Journal of Quantum Chemistry</i> , 1979 , 16, 1021-1031	2.1	9
4	Electronic structure of oxygen-doped gallium arsenide. <i>Journal of Physics C: Solid State Physics</i> , 1979 , 12, L831-L834		6
3	Multiple scattering-Xæluster model of GaAs: electronic states of isolated vacancies and substitutional impurities. <i>Journal of Physics C: Solid State Physics</i> , 1979 , 12, 3469-3481		47
2	A molecular cluster model of the electronic structure of IV and III-V covalent semiconductors: Application to GaAs. <i>Journal of Physics C: Solid State Physics</i> , 1979 , 12, 513-524		33
1	Molecular cluster model of covalent semiconductors. <i>Journal of Physics C: Solid State Physics</i> , 1978 , 11, L175-L177		12