Moritz Kraemer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1839344/publications.pdf

Version: 2024-02-01

21474 20759 114 24,565 114 60 citations h-index g-index papers 135 135 135 32650 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The effect of human mobility and control measures on the COVID-19 epidemic in China. Science, 2020, 368, 493-497.	6.0	2,168
2	An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. Science, 2020, 368, 638-642.	6.0	1,554
3	The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. ELife, 2015, 4, e08347.	2.8	1,428
4	Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature, 2022, 603, 679-686.	13.7	1,210
5	Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science, 2021, 372, 815-821.	6.0	1,125
6	Preparedness and vulnerability of African countries against importations of COVID-19: a modelling study. Lancet, The, 2020, 395, 871-877.	6.3	931
7	Zika virus in the Americas: Early epidemiological and genetic findings. Science, 2016, 352, 345-349.	6.0	877
8	Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity. Cell, 2021, 184, 64-75.e11.	13.5	843
9	Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence. Lancet, The, 2021, 397, 452-455.	6.3	720
10	Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nature Microbiology, 2019, 4, 854-863.	5.9	699
11	The current and future global distribution and population at risk of dengue. Nature Microbiology, 2019, 4, 1508-1515.	5.9	645
12	Pneumonia of unknown aetiology in Wuhan, China: potential for international spread via commercial air travel. Journal of Travel Medicine, 2020, 27, .	1.4	624
13	Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study. Lancet Infectious Diseases, The, 2022, 22, 35-42.	4.6	612
14	Establishment and cryptic transmission of Zika virus in Brazil and the Americas. Nature, 2017, 546, 406-410.	13.7	515
15	Three-quarters attack rate of SARS-CoV-2 in the Brazilian Amazon during a largely unmitigated epidemic. Science, 2021, 371, 288-292.	6.0	412
16	Anticipating the international spread of Zika virus from Brazil. Lancet, The, 2016, 387, 335-336.	6.3	401
17	Emergence and potential for spread of Chikungunya virus in Brazil. BMC Medicine, 2015, 13, 102.	2.3	369
18	SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway. Nature Microbiology, 2022, 7, 1161-1179.	5.9	352

#	Article	IF	CITATIONS
19	Establishment and lineage dynamics of the SARS-CoV-2 epidemic in the UK. Science, 2021, 371, 708-712.	6.0	335
20	Mapping the zoonotic niche of Ebola virus disease in Africa. ELife, 2014, 3, e04395.	2.8	328
21	Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. International Journal of Infectious Diseases, 2018, 67, 25-35.	1.5	305
22	Aggregated mobility data could help fight COVID-19. Science, 2020, 368, 145-146.	6.0	303
23	Mapping global environmental suitability for Zika virus. ELife, 2016, 5, .	2.8	299
24	Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature, 2017, 546, 401-405.	13.7	298
25	Potential for global spread of a novel coronavirus from China. Journal of Travel Medicine, 2020, 27, .	1.4	285
26	Epidemiological and clinical characteristics of the COVID-19 epidemic in Brazil. Nature Human Behaviour, 2020, 4, 856-865.	6.2	281
27	Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasites and Vectors, 2014, 7, 338.	1.0	280
28	Epidemiological data from the COVID-19 outbreak, real-time case information. Scientific Data, 2020, 7, 106.	2.4	280
29	Genomic and epidemiological monitoring of yellow fever virus transmission potential. Science, 2018, 361, 894-899.	6.0	279
30	The global compendium of Aedes aegypti and Ae. albopictus occurrence. Scientific Data, 2015, 2, 150035.	2.4	271
31	Genomic Epidemiology of SARS-CoV-2 in Guangdong Province, China. Cell, 2020, 181, 997-1003.e9.	13.5	236
32	Mask-wearing and control of SARS-CoV-2 transmission in the USA: a cross-sectional study. The Lancet Digital Health, 2021, 3, e148-e157.	5.9	208
33	Open access epidemiological data from the COVID-19 outbreak. Lancet Infectious Diseases, The, 2020, 20, 534.	4.6	205
34	Crowding and the shape of COVID-19 epidemics. Nature Medicine, 2020, 26, 1829-1834.	15.2	204
35	Spread of yellow fever virus outbreak in Angola and the Democratic Republic of the Congo 2015–16: a modelling study. Lancet Infectious Diseases, The, 2017, 17, 330-338.	4.6	185
36	Modelling COVID-19. Nature Reviews Physics, 2020, 2, 279-281.	11.9	174

#	Article	lF	CITATIONS
37	Potential for Zika virus introduction and transmission in resource-limited countries in Africa and the Asia-Pacific region: a modelling study. Lancet Infectious Diseases, The, 2016, 16, 1237-1245.	4.6	163
38	Mapping 123 million neonatal, infant and child deaths between 2000 and 2017. Nature, 2019, 574, 353-358.	13.7	161
39	The many projected futures of dengue. Nature Reviews Microbiology, 2015, 13, 230-239.	13.6	145
40	Spatiotemporal invasion dynamics of SARS-CoV-2 lineage B.1.1.7 emergence. Science, 2021, 373, 889-895.	6.0	142
41	Tracking the international spread of SARS-CoV-2 lineages B.1.1.7 and B.1.351/501Y-V2 with grinch. Wellcome Open Research, 2021, 6, 121.	0.9	129
42	Global yellow fever vaccination coverage from 1970 to 2016: an adjusted retrospective analysis. Lancet Infectious Diseases, The, 2017, 17, 1209-1217.	4.6	128
43	Geographic access to United States SARS-CoV-2 testing sites highlights healthcare disparities and may bias transmission estimates. Journal of Travel Medicine, 2020, 27, .	1.4	128
44	Model-based projections of Zika virus infections in childbearing women in the Americas. Nature Microbiology, 2016, 1, 16126.	5.9	126
45	Routes for COVID-19 importation in Brazil. Journal of Travel Medicine, 2020, 27, .	1.4	119
46	Tracking the international spread of SARS-CoV-2 lineages B.1.1.7 and B.1.351/501Y-V2. Wellcome Open Research, 2021, 6, 121.	0.9	115
47	Variation in Childhood Diarrheal Morbidity and Mortality in Africa, 2000–2015. New England Journal of Medicine, 2018, 379, 1128-1138.	13.9	106
48	Existing and potential infection risk zones of yellow fever worldwide: a modelling analysis. The Lancet Global Health, 2018, 6, e270-e278.	2.9	104
49	Track Omicron's spread with molecular data. Science, 2021, 374, 1454-1455.	6.0	103
50	Mapping the zoonotic niche of Marburg virus disease in Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2015, 109, 366-378.	0.7	99
51	Assessing Seasonal Risks for the Introduction and Mosquito-borne Spread of Zika Virus in Europe. EBioMedicine, 2016, 9, 250-256.	2.7	91
52	Utilizing general human movement models to predict the spread of emerging infectious diseases in resource poor settings. Scientific Reports, 2019, 9, 5151.	1.6	89
53	Progress and Challenges in Infectious Disease Cartography. Trends in Parasitology, 2016, 32, 19-29.	1.5	85
54	Real-time Epidemic Forecasting: Challenges and Opportunities. Health Security, 2019, 17, 268-275.	0.9	83

#	Article	IF	CITATIONS
55	Genomic Epidemiology Reconstructs the Introduction and Spread of Zika Virus in Central America and Mexico. Cell Host and Microbe, 2018, 23, 855-864.e7.	5.1	82
56	Mapping global variation in human mobility. Nature Human Behaviour, 2020, 4, 800-810.	6.2	82
57	Local, national, and regional viral haemorrhagic fever pandemic potential in Africa: a multistage analysis. Lancet, The, 2017, 390, 2662-2672.	6.3	80
58	Epidemiological and ecological determinants of Zika virus transmission in an urban setting. ELife, 2017, 6, .	2.8	80
59	A dynamic neural network model for predicting risk of Zika in real time. BMC Medicine, 2019, 17, 171.	2.3	75
60	Genomic, epidemiological and digital surveillance of Chikungunya virus in the Brazilian Amazon. PLoS Neglected Tropical Diseases, 2019, 13, e0007065.	1.3	75
61	Temperature modulates dengue virus epidemic growth rates through its effects on reproduction numbers and generation intervals. PLoS Neglected Tropical Diseases, 2017, 11, e0005797.	1.3	73
62	Travel Surveillance and Genomics Uncover a Hidden Zika Outbreak during the Waning Epidemic. Cell, 2019, 178, 1057-1071.e11.	13.5	68
63	Inferring the risk factors behind the geographical spread and transmission of Zika in the Americas. PLoS Neglected Tropical Diseases, 2018, 12, e0006194.	1.3	67
64	Big city, small world: density, contact rates, and transmission of dengue across Pakistan. Journal of the Royal Society Interface, 2015, 12, 20150468.	1.5	63
65	Emergence of the Asian lineage of Zika virus in Angola: an outbreak investigation. Lancet Infectious Diseases, The, 2019, 19, 1138-1147.	4.6	63
66	Updates to the zoonotic niche map of Ebola virus disease in Africa. ELife, 2016, 5, .	2.8	61
67	Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature, 0, , .	13.7	61
68	Projecting the end of the Zika virus epidemic in Latin America: a modelling analysis. BMC Medicine, 2018, 16, 180.	2.3	53
69	Factors Affecting Pre-Travel Health Seeking Behaviour and Adherence to Pre-Travel Health Advice: A Systematic Review. Journal of Travel Medicine, 2019, 26, .	1.4	46
70	Progress and challenges in virus genomic epidemiology. Trends in Parasitology, 2021, 37, 1038-1049.	1.5	45
71	Estimating the probability of dengue virus introduction and secondary autochthonous cases in Europe. Scientific Reports, 2018, 8, 4629.	1.6	44
72	Recommended reporting items for epidemic forecasting and prediction research: The EPIFORGE 2020 guidelines. PLoS Medicine, 2021, 18, e1003793.	3.9	42

#	Article	IF	Citations
73	Genomic and epidemiological characterisation of a dengue virus outbreak among blood donors in Brazil. Scientific Reports, 2017, 7, 15216.	1.6	40
74	Travel time to health facilities in areas of outbreak potential: maps for guiding local preparedness and response. BMC Medicine, 2019, 17, 232.	2.3	40
75	A comprehensive database of the geographic spread of past human Ebola outbreaks. Scientific Data, 2014, 1, 140042.	2.4	39
76	Spatio-temporal dynamics of dengue in Brazil: Seasonal travelling waves and determinants of regional synchrony. PLoS Neglected Tropical Diseases, 2019, 13, e0007012.	1.3	38
77	Use of Twitter social media activity as a proxy for human mobility to predict the spatiotemporal spread of COVID-19 at global scale. Geospatial Health, 2020, 15, .	0.3	38
78	Genomic and Epidemiological Surveillance of Zika Virus in the Amazon Region. Cell Reports, 2020, 30, 2275-2283.e7.	2.9	37
79	Inferences about spatiotemporal variation in dengue virus transmission are sensitive to assumptions about human mobility: a case study using geolocated tweets from Lahore, Pakistan. EPJ Data Science, 2018, 7, 16.	1.5	33
80	Association between coronavirus disease 2019 (COVID-19) and long-term exposure to air pollution: Evidence from the first epidemic wave in China. Environmental Pollution, 2021, 276, 116682.	3.7	33
81	Identifying residual hotspots and mapping lower respiratory infection morbidity and mortality in African children from 2000 to 2017. Nature Microbiology, 2019, 4, 2310-2318.	5.9	31
82	Seasonal and interannual risks of dengue introduction from South-East Asia into China, 2005-2015. PLoS Neglected Tropical Diseases, 2018, 12, e0006743.	1.3	30
83	Elevation as a proxy for mosquito-borne Zika virus transmission in the Americas. PLoS ONE, 2017, 12, e0178211.	1.1	30
84	Spatiotemporal incidence of Zika and associated environmental drivers for the 2015-2016 epidemic in Colombia. Scientific Data, 2018, 5, 180073.	2.4	29
85	Reconstruction and prediction of viral disease epidemics. Epidemiology and Infection, 2019, 147, e34.	1.0	29
86	Data curation during a pandemic and lessons learned from COVID-19. Nature Computational Science, 2021, 1, 9-10.	3.8	28
87	Monitoring key epidemiological parameters of SARS-CoV-2 transmission. Nature Medicine, 2021, 27, 1854-1855.	15.2	28
88	Zika virus transmission in Angola and the potential for further spread to other African settings. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2017, 111, 527-529.	0.7	23
89	Dynamics of conflict during the Ebola outbreak in the Democratic Republic of the Congo 2018–2019. BMC Medicine, 2020, 18, 113.	2.3	23
90	Using digital surveillance tools for near real-time mapping of the risk of infectious disease spread. Npj Digital Medicine, 2021, 4, 73.	5.7	23

#	Article	IF	CITATIONS
91	Asynchronicity of endemic and emerging mosquito-borne disease outbreaks in the Dominican Republic. Nature Communications, 2021, 12, 151.	5.8	22
92	Mapping environmental suitability of Haemagogus and Sabethes spp. mosquitoes to understand sylvatic transmission risk of yellow fever virus in Brazil. PLoS Neglected Tropical Diseases, 2022, 16, e0010019.	1.3	19
93	Endogenous social distancing and its underappreciated impact on the epidemic curve. Scientific Reports, 2021, 11, 3093.	1.6	17
94	Potential Zika virus spread within and beyond India. Journal of Travel Medicine, 2019, 26, .	1.4	16
95	Modelling distributions of Aedes aegypti and Aedes albopictus using climate, host density and interspecies competition. PLoS Neglected Tropical Diseases, 2021, 15, e0009063.	1.3	16
96	Trade-offs between individual and ensemble forecasts of an emerging infectious disease. Nature Communications, 2021, 12, 5379.	5.8	16
97	Geolocated Twitter social media data to describe the geographic spread of SARS-CoV-2. Journal of Travel Medicine, 2020, 27, .	1.4	15
98	The relationship between rising temperatures and malaria incidence in Hainan, China, from 1984 to 2010: a longitudinal cohort study. Lancet Planetary Health, The, 2022, 6, e350-e358.	5.1	15
99	Global patterns of aegyptism without arbovirus. PLoS Neglected Tropical Diseases, 2021, 15, e0009397.	1.3	14
100	Genomic epidemiology of SARS-CoV-2 transmission lineages in Ecuador. Virus Evolution, 2021, 7, veab051.	2.2	14
101	Assessing the impact of COVID-19 border restrictions on dengue transmission in Yunnan Province, China: an observational epidemiological and phylogenetic analysis. The Lancet Regional Health - Western Pacific, 2021, 14, 100259.	1.3	11
102	Potential for Seasonal Lassa Fever Case Exportation from Nigeria. American Journal of Tropical Medicine and Hygiene, 2019, 100, 647-651.	0.6	10
103	Potential plague exportation from Madagascar via international air travel. Lancet Infectious Diseases, The, 2018, 18, 247-248.	4.6	8
104	The impact of anthropogenic and environmental factors on human rabies cases in China. Transboundary and Emerging Diseases, 2020, 67, 2544-2553.	1.3	8
105	Transmission of SARS-CoV-2 before and after symptom onset: impact of nonpharmaceutical interventions in China. European Journal of Epidemiology, 2021, 36, 429-439.	2.5	8
106	Pokémon Go and Exposure to Mosquito-Borne Diseases: How Not to Catch †Em All. PLOS Currents, 2016, 8, .	1.4	8
107	Sharing patient-level real-time COVID-19 data. The Lancet Digital Health, 2020, 2, e345.	5.9	7
108	Sharing, synthesis and sustainability of data analysis for epidemic preparedness in Europe. Lancet Regional Health - Europe, The, 2021, 9, 100215.	3.0	7

#	Article	IF	CITATIONS
109	Causal Inference in Spatial Mapping. Trends in Parasitology, 2019, 35, 743-746.	1.5	6
110	Arboviral diseases and poverty in Alabama, 2007–2017. PLoS Neglected Tropical Diseases, 2021, 15, e0009535.	1.3	5
111	Malaria elimination on Hainan Island despite climate change. Communications Medicine, 2022, 2, .	1.9	5
112	A review of models applied to the geographic spread of Zika virus. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2021, 115, 956-964.	0.7	4
113	Quantifying the localized relationship between vector containment activities and dengue incidence in a real-world setting: A spatial and time series modelling analysis based on geo-located data from Pakistan. PLoS Neglected Tropical Diseases, 2020, 14, e0008273.	1.3	2
114	Air Passenger Travel and International Surveillance Data Predict Spatiotemporal Variation in Measles Importations to the United States. Pathogens, 2021, 10, 155.	1.2	2