Ian R. Adams

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1839056/publications.pdf

Version: 2024-02-01

201385 197535 3,620 49 27 49 citations h-index g-index papers 59 59 59 5966 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	RNA splicing is a key mediator of tumour cell plasticity and a therapeutic vulnerability in colorectal cancer. Nature Communications, 2022, 13, 2791.	5.8	11
2	Meiotic Cells Counteract Programmed Retrotransposon Activation via RNA-Binding Translational Repressor Assemblies. Developmental Cell, 2021, 56, 22-35.e7.	3.1	8
3	Nucleo-cytoplasmic shuttling of splicing factor SRSF1 is required for development and cilia function. ELife, 2021, 10, .	2.8	25
4	Activation of transcription factor circuity in 2i-induced ground state pluripotency is independent of repressive global epigenetic landscapes. Nucleic Acids Research, 2020, 48, 7748-7766.	6.5	5
5	Tex19.1 inhibits the N-end rule pathway and maintains acetylated SMC3 cohesin and sister chromatid cohesion in oocytes. Journal of Cell Biology, 2020, 219, .	2.3	5
6	A sensitive and affordable multiplex RT-qPCR assay for SARS-CoV-2 detection. PLoS Biology, 2020, 18, e3001030.	2.6	32
7	Large-scale chromatin organisation in interphase, mitosis and meiosis. Biochemical Journal, 2019, 476, 2141-2156.	1.7	13
8	DNA Methylation Directs Polycomb-Dependent 3D Genome Re-organization in Naive Pluripotency. Cell Reports, 2019, 29, 1974-1985.e6.	2.9	76
9	Dazl determines primordial follicle formation through the translational regulation of Tex14. FASEB Journal, 2019, 33, 14221-14233.	0.2	13
10	Mouse ANKRD31 Regulates Spatiotemporal Patterning of Meiotic Recombination Initiation and Ensures Recombination between X and Y Sex Chromosomes. Molecular Cell, 2019, 74, 1069-1085.e11.	4.5	74
11	A slow transcription rate causes embryonic lethality and perturbs kinetic coupling of neuronal genes. EMBO Journal, 2019, 38, .	3.5	46
12	An ancient germ cell-specific RNA-binding protein protects the germline from cryptic splice site poisoning. ELife, 2019, 8, .	2.8	22
13	Defects in meiotic recombination delay progression through pachytene in Tex19.1â^'/â^' mouse spermatocytes. Chromosoma, 2018, 127, 437-459.	1.0	12
14	KDM3A coordinates actin dynamics with intraflagellar transport to regulate cilia stability. Journal of Cell Biology, 2017, 216, 999-1013.	2.3	33
15	RNA immunoprecipitation identifies novel targets of DAZL in human foetal ovary. Molecular Human Reproduction, 2017, 23, 177-186.	1.3	24
16	Tex19.1 promotes Spo11-dependent meiotic recombination in mouse spermatocytes. PLoS Genetics, 2017, 13, e1006904.	1.5	25
17	Mobilization of LINE-1 retrotransposons is restricted by Tex19.1 in mouse embryonic stem cells. ELife, 2017, 6, .	2.8	43
18	Etoposide damages female germ cells in the developing ovary. BMC Cancer, 2016, 16, 482.	1.1	19

#	Article	IF	Citations
19	The impact of transposable elements on mammalian development. Development (Cambridge), 2016, 143, 4101-4114.	1.2	161
20	Is there a role for DAZL in human female fertility?. Molecular Human Reproduction, 2016, 22, 377-383.	1.3	24
21	KRABs RegulaTE Gene Expression beyond the Embryo. Developmental Cell, 2016, 36, 591-592.	3.1	4
22	A tight control of Rif1 by Oct4 and Smad3 is critical for mouse embryonic stem cell stability. Cell Death and Disease, 2015, 6, e1588-e1588.	2.7	18
23	The E3 ubiquitin ligase activity of RING1B is not essential for early mouse development. Genes and Development, 2015, 29, 1897-1902.	2.7	142
24	Oocyte development, meiosis and aneuploidy. Seminars in Cell and Developmental Biology, 2015, 45, 68-76.	2.3	136
25	Kdm3a lysine demethylase is an Hsp90 client required for cytoskeletal rearrangements during spermatogenesis. Molecular Biology of the Cell, 2014, 25, 1216-1233.	0.9	29
26	The RNA-Editing Enzyme ADAR1 Controls Innate Immune Responses to RNA. Cell Reports, 2014, 9, 1482-1494.	2.9	508
27	HSP70-binding protein HSPBP1 regulates chaperone expression at a posttranslational level and is essential for spermatogenesis. Molecular Biology of the Cell, 2014, 25, 2260-2271.	0.9	25
28	The Role of Chromatin Modifications in Progression through Mouse Meiotic Prophase. Journal of Genetics and Genomics, 2014, 41, 97-106.	1.7	40
29	Defending the genome from the enemy within: mechanisms of retrotransposon suppression in the mouse germline. Cellular and Molecular Life Sciences, 2014, 71, 1581-1605.	2.4	99
30	Redistribution of H3K27me3 upon DNA hypomethylation results in de-repression of Polycomb target genes. Genome Biology, 2013, 14, R25.	13.9	200
31	RIF1 Is Essential for 53BP1-Dependent Nonhomologous End Joining and Suppression of DNA Double-Strand Break Resection. Molecular Cell, 2013, 49, 858-871.	4.5	543
32	From Paramutation to Paradigm. PLoS Genetics, 2013, 9, e1003537.	1.5	8
33	The genome-defence gene Tex19.1 suppresses LINE-1 retrotransposons in the placenta and prevents intra-uterine growth retardation in mice. Human Molecular Genetics, 2013, 22, 1791-1806.	1.4	37
34	Lsh regulates LTR retrotransposon repression independently of Dnmt3b function. Genome Biology, 2013, 14, R146.	13.9	54
35	Microarray Analysis of LTR Retrotransposon Silencing Identifies Hdac1 as a Regulator of Retrotransposon Expression in Mouse Embryonic Stem Cells. PLoS Computational Biology, 2012, 8, e1002486.	1.5	64
36	Promoter DNA methylation couples genome-defence mechanisms to epigenetic reprogramming in the mouse germline. Development (Cambridge), 2012, 139, 3623-3632.	1.2	130

#	Article	IF	CITATIONS
37	The Tissue-Specific Rep8/UBXD6 Tethers p97 to the Endoplasmic Reticulum Membrane for Degradation of Misfolded Proteins. PLoS ONE, 2011, 6, e25061.	1.1	12
38	RSPO1 $\hat{\mathbb{I}}^2$ -Catenin Signaling Pathway Regulates Oogonia Differentiation and Entry into Meiosis in the Mouse Fetal Ovary. PLoS ONE, 2011, 6, e25641.	1.1	110
39	Cycling mouse oocytes through meiosis. Cell Cycle, 2010, 9, 642-651.	1.3	1
40	Meiosis and retrotransposon silencing during germ cell development in mice. Differentiation, 2010, 79, 147-158.	1.0	30
41	Germ cell sex determination in mammals. Molecular Human Reproduction, 2009, 15, 205-213.	1.3	101
42	Sdmg1 is a component of secretory granules in mouse secretory exocrine tissues. Developmental Dynamics, 2009, 238, 223-231.	0.8	13
43	Deletion of the Pluripotency-Associated Tex19.1 Gene Causes Activation of Endogenous Retroviruses and Defective Spermatogenesis in Mice. PLoS Genetics, 2008, 4, e1000199.	1.5	68
44	Sdmg1 is a conserved transmembrane protein associated with germ cell sex determination and germline-soma interactions in mice. Development (Cambridge), 2008, 135, 1415-1425.	1.2	68
45	The Role of Exogenous Fibroblast Growth Factor-2 on the Reprogramming of Primordial Germ Cells into Pluripotent Stem Cells. Stem Cells, 2006, 24, 1441-1449.	1.4	94
46	Identification and characterisation of mRif1: A mouse telomere-associated protein highly expressed in germ cells and embryo-derived pluripotent stem cells. Developmental Dynamics, 2004, 229, 733-744.	0.8	51
47	Spindle pole body duplication: a model for centrosome duplication?. Trends in Cell Biology, 2000, 10, 329-335.	3.6	117
48	Localization of Core Spindle Pole Body (SPB) Components during SPB Duplication in Saccharomyces cerevisiae. Journal of Cell Biology, 1999, 145, 809-823.	2.3	186
49	<i>SPC72:</i> a spindle pole component required for spindle orientation in the yeast <i>Saccharomyces cerevisiae</i> . Journal of Cell Science, 1998, 111, 2809-2818.	1.2	45