
Ana Amaral

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1838886/publications.pdf Version: 2024-02-01

ΔΝΙΑ ΔΝΑΑΠΑΙ

#	Article	IF	CITATIONS
1	Effect of substrate temperature on the surface structure, composition and morphology of indium–tin oxide films. Surface and Coatings Technology, 2000, 124, 70-75.	4.8	61
2	Transparent p-type CuxS thin films. Journal of Alloys and Compounds, 2011, 509, 5099-5104.	5.5	50
3	Transparent thin film transistors based on indium oxide semiconductor. Journal of Non-Crystalline Solids, 2006, 352, 2311-2314.	3.1	48
4	Properties of ITO films deposited by r.fPERTE on unheated polymer substrates—dependence on oxygen partial pressure. Thin Solid Films, 2003, 427, 215-218.	1.8	39
5	InOx semiconductor films deposited on glass substrates for transparent electronics. Journal of Non-Crystalline Solids, 2006, 352, 2315-2318.	3.1	30
6	Early stage growth structure of indium tin oxide thin films deposited by reactive thermal evaporation. Surface and Coatings Technology, 2000, 125, 151-156.	4.8	24
7	ITO coated flexible transparent substrates for liquid crystal based devices. Vacuum, 2002, 64, 475-479.	3.5	24
8	Effect of thickness on the properties of ITO thin films deposited by RF-PERTE on unheated, flexible, transparent substrates. Surface and Coatings Technology, 2002, 151-152, 252-256.	4.8	23
9	Admittance frequency dependence of Schottky barriers formed on dc triode sputtered amorphous silicon: Hydrogen influence on deep gap state characteristics. Journal of Applied Physics, 1985, 58, 1292-1301.	2.5	19
10	Effect of rf power on the properties of ITO thin films deposited by plasma enhanced reactive thermal evaporation on unheated polymer substrates. Journal of Non-Crystalline Solids, 2002, 299-302, 1208-1212.	3.1	19
11	Ultrasensitive microchip sensor based on boron-containing polyfluorene nanofilms. Biosensors and Bioelectronics, 2010, 26, 1662-1665.	10.1	18
12	ITO properties on anisotropic flexible transparent cellulosic substrates under different stress conditions. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 118, 183-186.	3.5	16
13	P-type CuxS thin films: Integration in a thin film transistor structure. Thin Solid Films, 2013, 543, 3-6.	1.8	16
14	Properties of a-Si:H TFTs using silicon carbonitride as dielectric. Journal of Non-Crystalline Solids, 2004, 338-340, 797-801.	3.1	15
15	Optoelectronic properties of transparent p-type semiconductor CuxS thin films. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1652-1654.	1.8	15
16	Properties of high growth rate amorphous silicon deposited by MC-RF-PECVD. Vacuum, 2002, 64, 245-248.	3.5	12
17	Influence of the initial layers on the optical and electrical properties of ITO films. Optical Materials, 2001, 17, 291-294.	3.6	11
18	ITO thin films deposited by RTE on flexible transparent substrates. Optical Materials, 2001, 17, 287-290.	3.6	11

ANA AMARAL

#	Article	IF	CITATIONS
19	Dependence of TFT performance on the dielectric characteristics. Thin Solid Films, 2003, 427, 71-76.	1.8	10
20	Thermal dehydrogenation of amorphous silicon deposited on c-Si: Effect of the substrate temperature during deposition. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 2198-2202.	0.8	10
21	ITO films deposited by rf-PERTE on unheated polymer substrates—properties dependence on In–Sn alloy composition. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 109, 245-248.	3.5	9
22	ITO films with enhanced electrical properties deposited on unheated ZnO-coated polymer substrates. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 118, 66-69.	3.5	9
23	Dye-sensitized 1D anatase TiO2 nanorods for tunable efficient photodetection in the visible range. Sensors and Actuators B: Chemical, 2012, 161, 901-907.	7.8	9
24	A CMOS micro power switched-capacitor DC–DC step-up converter for indoor light energy harvesting applications. Analog Integrated Circuits and Signal Processing, 2014, 78, 333-351.	1.4	9
25	Flexible cellulose derivative PDLC type cells. Liquid Crystals, 2002, 29, 475-477.	2.2	8
26	Positron annihilation and constant photocurrent method measurements on a-Si:H films: A comparative approach to defect identification. Radiation Physics and Chemistry, 2007, 76, 220-223.	2.8	7
27	<i>p</i> -Type Cuo _{<i>X</i>} Thin Films by rf-Plasma Enhanced Reactive Thermal Evaporation: Influence of rf-Power Density. Journal of Nanoscience and Nanotechnology, 2012, 12, 6754-6757.	0.9	7
28	Determination of the density of states in p-doped hydrogenated amorphous silicon by means of the modulated photocurrent experiment. Journal of Non-Crystalline Solids, 1993, 164-166, 423-426.	3.1	5
29	A MIS transistor using the nucleation surface of polycrystalline diamond. Diamond and Related Materials, 2008, 17, 768-771.	3.9	5
30	p/n junction depth control using amorphous silicon as a low temperature dopant source. Thin Solid Films, 2013, 543, 122-124.	1.8	5
31	Influence of the a-Si:H structural defects studied by positron annihilation on the solar cells characteristics. Thin Solid Films, 2002, 403-404, 539-542.	1.8	4
32	a-Si:H TFT enhancement by plasma processing of the insulating/semiconductor interface. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 109, 264-268.	3.5	4
33	On the Role of Tin Doping in InO _{<i>x</i>} Thin Films Deposited by Radio Frequency-Plasma Enhanced Reactive Thermal Evaporation. Journal of Nanoscience and Nanotechnology, 2010, 10, 2713-2716.	0.9	4
34	Properties of ITO films deposited by plasma enhanced RTE on unheated polymer sheets – dependence on rf electrode distance from substrates. Journal of Non-Crystalline Solids, 2004, 338-340, 630-633.	3.1	3
35	Thermal dehydrogenation of amorphous silicon: A time-evolution study. Thin Solid Films, 2013, 543, 48-50.	1.8	3
36	Photoconductivity kinetics of indium sulfofluoride thin films. EPJ Applied Physics, 2020, 89, 10302.	0.7	2

ANA AMARAL

#	Article	IF	CITATIONS
37	Role of rf power on the properties of undoped SnOx films deposited by rf-PERTE at low substrate temperature. Surface and Coatings Technology, 2008, 202, 3893-3896.	4.8	1
38	Role of the oxygen partial pressure on the properties of undoped tin oxide films deposited at low temperature. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1957-1960.	1.8	1
39	Highly transparent undoped semiconducting ZnOx thin films deposited at room temperature by rf-PERTE — Influence of rf power. Journal of Non-Crystalline Solids, 2010, 356, 1392-1394.	3.1	1
40	Device quality InOx:Sn and InOx thin films deposited at room temperature with different rf-power densities. Thin Solid Films, 2012, 526, 221-224.	1.8	1
41	InOx thin films deposited by plasma assisted evaporation: Application in light shutters. Vacuum, 2014, 107, 116-119.	3.5	1
42	Etchability Dependence of InOx and ITO Thin Films by Plasma Enhanced Reactive Thermal Evaporation on Structural Properties and Deposition Conditions. MRS Advances, 2018, 3, 207-212.	0.9	1
43	Undoped InO _x Films Deposited by Radio Frequency Plasma Enhanced Reactive Thermal Evaporation at Room Temperature: Importance of Substrate. Journal of Nanoscience and Nanotechnology, 2010, 10, 2701-2704.	0.9	0
44	An indium-oxide electrode with discontinuous Au layers for plasmonic devices. , 2020, , .		0