
Roberta Sclocco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1838778/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neuroimmune signatures in chronic low back pain subtypes. Brain, 2022, 145, 1098-1110.	7.6	24
2	Sonographic measures and sensory threshold of the normal sciatic nerve and hamstring muscles. Journal of Ultrasound, 2022, 25, 47-57.	1.3	3
3	Patient–clinician brain concordance underlies causal dynamics in nonverbal communication and negative affective expressivity. Translational Psychiatry, 2022, 12, 44.	4.8	10
4	Cine gastric <scp>MRI</scp> reveals altered <scp>Gut–Brain</scp> Axis in Functional Dyspepsia: gastric motility is linked with brainstemâ€cortical <scp>fMRI</scp> connectivity. Neurogastroenterology and Motility, 2022, 34, e14396.	3.0	6
5	Nonâ€uniform gastric wall kinematics revealed by 4D Cine magnetic resonance imaging in humans. Neurogastroenterology and Motility, 2021, 33, e14146.	3.0	9
6	S1 functional connectivity during rest and electro-acupuncture tracks median nerve and patient function improvement following acupuncture for carpal tunnel syndrome. Journal of Pain, 2021, 22, 606-607.	1.4	0
7	S1 Brain Connectivity in Carpal Tunnel Syndrome Underlies Median Nerve and Functional Improvement Following Electro-Acupuncture. Frontiers in Neurology, 2021, 12, 754670.	2.4	4
8	Dynamic brain-to-brain concordance and behavioral mirroring as a mechanism of the patient-clinician interaction. Science Advances, 2020, 6, .	10.3	46
9	Frequency-Dependent Effects of Exhalatory-Gated Transcutaneous Vagus Nerve Stimulation on Cardiac Autonomic Regulation in Hypertension. , 2020, , .		1
10	Modulatory Effects of Respiratory-Gated Auricular Vagal Nerve Stimulation on Cardiovagal Activity in Hypertension*. , 2020, 2020, 2581-2584.		6
11	Effects of Respiratory-Gated Auricular Vagal Afferent Nerve Stimulation (RAVANS) in Hypertensive Patients during the Handgrip experiment. , 2020, , .		0
12	Electro-acupuncture alters functional brain connectivity between primary somatosensory cortex and autonomic and pain processing regions in Carpal Tunnel Syndrome. Integrative Medicine Research, 2020, 9, 100506.	1.8	0
13	Transcutaneous vagus nerve stimulation increases locus coeruleus function and memory performance in older individuals. Alzheimer's and Dementia, 2020, 16, e044766.	0.8	4
14	Stimulus frequency modulates brainstem response to respiratory-gated transcutaneous auricular vagus nerve stimulation. Brain Stimulation, 2020, 13, 970-978.	1.6	61
15	International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020). Frontiers in Human Neuroscience, 2020, 14, 568051.	2.0	143
16	SPARC: Respiratoryâ€Gated Transcutaneous Vagus Nerve Stimulation Modulates Gastric Function in Functional Dyspepsia. FASEB Journal, 2020, 34, 1-1.	0.5	0
17	SPARC: Transcutaneous Auricular Vagal Nerve Stimulation Increases Antroduodenal Motility in Rat within a Narrow Range of Stimulus Parameters. FASEB Journal, 2020, 34, 1-1.	0.5	0
18	The central autonomic network at rest: Uncovering functional MRI correlates of time-varying autonomic outflow. NeuroImage, 2019, 197, 383-390.	4.2	92

ROBERTA SCLOCCO

#	Article	IF	CITATIONS
19	Ulnar nerve instability in the cubital tunnel of asymptomatic volunteers. Journal of Ultrasound, 2019, 22, 337-344.	1.3	27
20	The influence of respiration on brainstem and cardiovagal response to auricular vagus nerve stimulation: A multimodal ultrahigh-field (7T) fMRI study. Brain Stimulation, 2019, 12, 911-921.	1.6	104
21	Brainstem neuroimaging of nociception and pain circuitries. Pain Reports, 2019, 4, e745.	2.7	40
22	Challenges and opportunities for brainstem neuroimaging with ultrahigh field MRI. NeuroImage, 2018, 168, 412-426.	4.2	121
23	Motion sickness increases functional connectivity between visual motion and nausea-associated brain regions. Autonomic Neuroscience: Basic and Clinical, 2017, 202, 108-113.	2.8	40
24	Modulation of brainstem activity and connectivity by respiratory-gated auricular vagal afferent nerve stimulation in migraine patients. Pain, 2017, 158, 1461-1472.	4.2	99
25	Respiratory-gated Auricular Vagal Afferent Nerve Stimulation (RAVANS) effects on autonomic outflow in hypertension. , 2017, 2017, 3130-3133.		15
26	Brain Circuitry Supporting Multi-Organ Autonomic Outflow in Response to Nausea. Cerebral Cortex, 2016, 26, bhu172.	2.9	40
27	Su1567 Motion Sickness Increases Functional Connectivity Between Visual Motion and Nausea-Associated Brain Regions. Gastroenterology, 2016, 150, S528.	1.3	0
28	Neuroimaging brainstem circuitry supporting cardiovagal response to pain: a combined heart rate variability/ultrahigh-field (7 T) functional magnetic resonance imaging study. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150189.	3.4	39
29	Combining sudomotor nerve impulse estimation with fMRI to investigate the central sympathetic response to nausea. , 2015, 2015, 4683-6.		4
30	EEG-based index for engagement level monitoring during sustained attention. , 2015, 2015, 1512-5.		42
31	EEG-informed fMRI analysis during a hand grip task: estimating the relationship between EEG rhythms and the BOLD signal. Frontiers in Human Neuroscience, 2014, 8, 186.	2.0	21
32	682 Brain Circuitry of Autonomic Nervous System Outflow in Response to Nausea. Gastroenterology, 2014, 146, S-121.	1.3	0
33	575 Insular Cortex Mediates Autonomic Nervous System Response to Nausea. Gastroenterology, 2013, 144, S-108.	1.3	0
34	EEG-informed fMRI analysis during a hand grip task. , 2012, 2012, 4712-5.		1
35	Parcel-Based Connectivity Analysis of fMRI Data for the Study of Epileptic Seizure Propagation. Brain Topography, 2012, 25, 345-361.	1.8	12
36	GMAC: A Matlab toolbox for spectral Granger causality analysis of fMRI data. Computers in Biology and Medicine, 2012, 42, 943-956.	7.0	19

#	Article	IF	CITATIONS
37	BOLD correlates of Alpha and Beta EEG-rhythm during a motor task. , 2011, , .		2
38	Effects of Respiratory-Gated Auricular Vagal Nerve Stimulation (RAVANS) on Nonlinear Heartbeat Dynamics of Hypertensive Patients. , 0, , .		2
39	Acute Effects of Respiratory-Gated Auricular Vagal Afferent Nerve Stimulation in the Modulation of Blood Pressure in Hypertensive Patients. , 0, , .		9