Xin Yao

List of Publications by Citations

Source: https://exaly.com/author-pdf/1838747/xin-yao-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

640 30,066 157 77 h-index g-index citations papers 36,273 715 7.91 5.4 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
640	Evolutionary programming made faster. <i>IEEE Transactions on Evolutionary Computation</i> , 1999 , 3, 82-102	15.6	2292
639	. Proceedings of the IEEE, 1999 , 87, 1423-1447	14.3	1551
638	Stochastic ranking for constrained evolutionary optimization. <i>IEEE Transactions on Evolutionary Computation</i> , 2000 , 4, 284-294	15.6	1034
637	. IEEE Transactions on Evolutionary Computation, 2016 , 20, 606-626	15.6	776
636	Large scale evolutionary optimization using cooperative coevolution. <i>Information Sciences</i> , 2008 , 178, 2985-2999	7.7	634
635	Diversity creation methods: a survey and categorisation. <i>Information Fusion</i> , 2005 , 6, 5-20	16.7	597
634	A new evolutionary system for evolving artificial neural networks. <i>IEEE Transactions on Neural Networks</i> , 1997 , 8, 694-713		593
633	MWMOTEMajority Weighted Minority Oversampling Technique for Imbalanced Data Set Learning. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2014 , 26, 405-425	4.2	470
632	Cooperatively Coevolving Particle Swarms for Large Scale Optimization. <i>IEEE Transactions on Evolutionary Computation</i> , 2012 , 16, 210-224	15.6	459
631	Ensemble learning via negative correlation. <i>Neural Networks</i> , 1999 , 12, 1399-1404	9.1	432
630	Many-Objective Evolutionary Algorithms. ACM Computing Surveys, 2015, 48, 1-35	13.4	419
629	Cooperative Co-Evolution With Differential Grouping for Large Scale Optimization. <i>IEEE Transactions on Evolutionary Computation</i> , 2014 , 18, 378-393	15.6	413
628	A New Dominance Relation-Based Evolutionary Algorithm for Many-Objective Optimization. <i>IEEE Transactions on Evolutionary Computation</i> , 2016 , 20, 16-37	15.6	395
627	. IEEE Transactions on Evolutionary Computation, 2015 , 19, 524-541	15.6	349
626	Evolutionary programming using mutations based on the Levy probability distribution. <i>IEEE Transactions on Evolutionary Computation</i> , 2004 , 8, 1-13	15.6	326
625	Using Class Imbalance Learning for Software Defect Prediction. <i>IEEE Transactions on Reliability</i> , 2013 , 62, 434-443	4.6	295
624	Search biases in constrained evolutionary optimization. <i>IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews,</i> 2005 , 35, 233-243		287

623	A review of evolutionary artificial neural networks. <i>International Journal of Intelligent Systems</i> , 1993 , 8, 539-567	8.4	286	
622	Multiclass Imbalance Problems: Analysis and Potential Solutions. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2012 , 42, 1119-30		285	
621	Drift analysis and average time complexity of evolutionary algorithms. <i>Artificial Intelligence</i> , 2001 , 127, 57-85	3.6	277	
620	An analysis of diversity measures. <i>Machine Learning</i> , 2006 , 65, 247-271	4	273	
619	Evolutionary ensembles with negative correlation learning. <i>IEEE Transactions on Evolutionary Computation</i> , 2000 , 4, 380-387	15.6	273	
618	The Impact of Diversity on Online Ensemble Learning in the Presence of Concept Drift. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2010 , 22, 730-742	4.2	271	
617	DDD: A New Ensemble Approach for Dealing with Concept Drift. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2012 , 24, 619-633	4.2	256	
616	Software Module Clustering as a Multi-Objective Search Problem. <i>IEEE Transactions on Software Engineering</i> , 2011 , 37, 264-282	3.5	234	
615	Balancing Convergence and Diversity in Decomposition-Based Many-Objective Optimizers. <i>IEEE Transactions on Evolutionary Computation</i> , 2016 , 20, 180-198	15.6	232	
614	Diversity analysis on imbalanced data sets by using ensemble models 2009,		220	
613	Experimental study on population-based incremental learning algorithms for dynamic optimization problems. <i>Soft Computing</i> , 2005 , 9, 815-834	3.5	200	
612	Population-Based Incremental Learning With Associative Memory for Dynamic Environments. <i>IEEE Transactions on Evolutionary Computation</i> , 2008 , 12, 542-561	15.6	197	
611	A constructive algorithm for training cooperative neural network ensembles. <i>IEEE Transactions on Neural Networks</i> , 2003 , 14, 820-34		191	
610	A benchmark test suite for evolutionary many-objective optimization. <i>Complex & Intelligent Systems</i> , 2017 , 3, 67-81	7.1	187	
609	Resampling-Based Ensemble Methods for Online Class Imbalance Learning. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2015 , 27, 1356-1368	4.2	185	
608	Decomposition-Based Memetic Algorithm for Multiobjective Capacitated Arc Routing Problem. <i>IEEE Transactions on Evolutionary Computation</i> , 2011 , 15, 151-165	15.6	179	
607	. IEEE Transactions on Evolutionary Computation, 2003, 7, 532-545	15.6	177	
606	Making use of population information in evolutionary artificial neural networks. <i>IEEE Transactions on Systems, Man, and Cybernetics,</i> 1998 , 28, 417-25		170	

605	A study of drift analysis for estimating computation time of evolutionary algorithms. <i>Natural Computing</i> , 2004 , 3, 21-35	1.3	165
604	Simultaneous training of negatively correlated neural networks in an ensemble. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 1999 , 29, 716-25		159
603	Evolutionary artificial neural networks. International Journal of Neural Systems, 1993, 4, 203-22	6.2	146
602	Evolving Diverse Ensembles Using Genetic Programming for Classification With Unbalanced Data. <i>IEEE Transactions on Evolutionary Computation</i> , 2013 , 17, 368-386	15.6	141
601	Time complexity of evolutionary algorithms for combinatorial optimization: A decade of results. <i>International Journal of Automation and Computing</i> , 2007 , 4, 281-293	3.5	139
600	Memetic Algorithm With Extended Neighborhood Search for Capacitated Arc Routing Problems. <i>IEEE Transactions on Evolutionary Computation</i> , 2009 , 13, 1151-1166	15.6	138
599	DG2: A Faster and More Accurate Differential Grouping for Large-Scale Black-Box Optimization. <i>IEEE Transactions on Evolutionary Computation</i> , 2017 , 21, 929-942	15.6	137
598	Promises and challenges of evolvable hardware. <i>IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews</i> , 1999 , 29, 87-97		136
597	Cooperative Co-evolution with delta grouping for large scale non-separable function optimization 2010 ,		132
596	Population-Based Algorithm Portfolios for Numerical Optimization. <i>IEEE Transactions on Evolutionary Computation</i> , 2010 , 14, 782-800	15.6	131
595	. IEEE Transactions on Evolutionary Computation, 2016 , 20, 924-938	15.6	128
594	A novel co-evolutionary approach to automatic software bug fixing 2008,		126
593	Towards an analytic framework for analysing the computation time of evolutionary algorithms. <i>Artificial Intelligence</i> , 2003 , 145, 59-97	3.6	124
592	Diversity Assessment in Many-Objective Optimization. <i>IEEE Transactions on Cybernetics</i> , 2017 , 47, 1510-	-1 <u>522</u>	120
591	Ensemble Learning Using Multi-Objective Evolutionary Algorithms. <i>Mathematical Modelling and Algorithms</i> , 2006 , 5, 417-445		117
590	Mathematical modeling and multi-objective evolutionary algorithms applied to dynamic flexible job shop scheduling problems. <i>Information Sciences</i> , 2015 , 298, 198-224	7.7	115
589	Quality Evaluation of Solution Sets in Multiobjective Optimisation. <i>ACM Computing Surveys</i> , 2019 , 52, 1-38	13.4	114
588	From an individual to a population: an analysis of the first hitting time of population-based evolutionary algorithms. <i>IEEE Transactions on Evolutionary Computation</i> , 2002 , 6, 495-511	15.6	110

(2010-2010)

587	Cooperative Co-evolution for large scale optimization through more frequent random grouping 2010 ,		109
586	A Competitive Divide-and-Conquer Algorithm for Unconstrained Large-Scale Black-Box Optimization. <i>ACM Transactions on Mathematical Software</i> , 2016 , 42, 1-24	2.3	109
585	Evolving hybrid ensembles of learning machines for better generalisation. <i>Neurocomputing</i> , 2006 , 69, 686-700	5.4	105
584	Dynamic sampling approach to training neural networks for multiclass imbalance classification. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2013 , 24, 647-60	10.3	104
583	Towards designing artificial neural networks by evolution. <i>Applied Mathematics and Computation</i> , 1998 , 91, 83-90	2.7	104
582	A memetic algorithm for VLSI floorplanning. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2007 , 37, 62-9		104
581	Evolutionary Generative Adversarial Networks. <i>IEEE Transactions on Evolutionary Computation</i> , 2019 , 23, 921-934	15.6	101
580	. IEEE Transactions on Evolutionary Computation, 2019 , 23, 303-315	15.6	99
579	Online Ensemble Learning of Data Streams with Gradually Evolved Classes. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2016 , 28, 1532-1545	4.2	94
578	An Evolutionary Multiobjective Approach to Sparse Reconstruction. <i>IEEE Transactions on Evolutionary Computation</i> , 2014 , 18, 827-845	15.6	93
577	A Systematic Study of Online Class Imbalance Learning With Concept Drift. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2018 , 29, 4802-4821	10.3	92
576	Short-Term Load Forecasting with Neural Network Ensembles: A Comparative Study [Application Notes]. <i>IEEE Computational Intelligence Magazine</i> , 2011 , 6, 47-56	5.6	91
575	. IEEE Transactions on Intelligent Transportation Systems, 2015 , 16, 2997-3016	6.1	89
574	. IEEE Transactions on Evolutionary Computation, 2020 , 24, 201-216	15.6	88
573	Interaction dynamics of neuronal oscillations analysed using wavelet transforms. <i>Journal of Neuroscience Methods</i> , 2007 , 160, 178-85	3	87
572	Corner Sort for Pareto-Based Many-Objective Optimization. <i>IEEE Transactions on Cybernetics</i> , 2014 , 44, 92-102	10.2	85
571	Cooperative Coevolution With Route Distance Grouping for Large-Scale Capacitated Arc Routing Problems. <i>IEEE Transactions on Evolutionary Computation</i> , 2014 , 18, 435-449	15.6	85
570	Multiobjective Neural Network Ensembles Based on Regularized Negative Correlation Learning. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2010 , 22, 1738-1751	4.2	85

569	Thermodynamic Pareto optimization of turbojet engines using multi-objective genetic algorithms. <i>International Journal of Thermal Sciences</i> , 2005 , 44, 1061-1071	4.1	84
568	Scalability of generalized adaptive differential evolution for large-scale continuous optimization. <i>Soft Computing</i> , 2011 , 15, 2141-2155	3.5	82
567	Evolving artificial neural network ensembles. <i>IEEE Computational Intelligence Magazine</i> , 2008 , 3, 31-42	5.6	81
566	A new adaptive merging and growing algorithm for designing artificial neural networks. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2009 , 39, 705-22		80
565	Ensembles and locality: Insight on improving software effort estimation. <i>Information and Software Technology</i> , 2013 , 55, 1512-1528	3.4	79
564	Accelerating Large-Scale Multiobjective Optimization via Problem Reformulation. <i>IEEE Transactions on Evolutionary Computation</i> , 2019 , 23, 949-961	15.6	78
563	A novel evolutionary algorithm for determining unified creep damage constitutive equations. <i>International Journal of Mechanical Sciences</i> , 2002 , 44, 987-1002	5.5	77
562	A framework for finding robust optimal solutions over time. <i>Memetic Computing</i> , 2013 , 5, 3-18	3.4	76
561	Relationships between Diversity of Classification Ensembles and Single-Class Performance Measures. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2013 , 25, 206-219	4.2	76
560	Regularized negative correlation learning for neural network ensembles. <i>IEEE Transactions on Neural Networks</i> , 2009 , 20, 1962-79		76
559	Probabilistic classification vector machines. <i>IEEE Transactions on Neural Networks</i> , 2009 , 20, 901-14		75
558	A large population size can be unhelpful in evolutionary algorithms. <i>Theoretical Computer Science</i> , 2012 , 436, 54-70	1.1	74
557	Empirical analysis of evolutionary algorithms with immigrants schemes for dynamic optimization. <i>Memetic Computing</i> , 2009 , 1, 3-24	3.4	74
556	An evolutionary clustering algorithm for gene expression microarray data analysis. <i>IEEE Transactions on Evolutionary Computation</i> , 2006 , 10, 296-314	15.6	73
555	An evolutionary approach to materialized views selection in a data warehouse environment. <i>IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews</i> , 2001 , 31, 282-294		72
554	Continuous Dynamic Constrained Optimization The Challenges. <i>IEEE Transactions on Evolutionary Computation</i> , 2012 , 16, 769-786	15.6	71
553	. IEEE Transactions on Reliability, 2015 , 64, 234-246	4.6	70
552	Speciation as automatic categorical modularization. <i>IEEE Transactions on Evolutionary Computation</i> , 1997 , 1, 101-108	15.6	70

(2010-2009)

551	Predictive Ensemble Pruning by Expectation Propagation. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2009 , 21, 999-1013	4.2	68	
550	Efficient Resource Allocation in Cooperative Co-Evolution for Large-Scale Global Optimization. <i>IEEE Transactions on Evolutionary Computation</i> , 2017 , 21, 493-505	15.6	66	
549	Learning in the model space for cognitive fault diagnosis. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2014 , 25, 124-36	10.3	66	
548	Search based software testing of object-oriented containers. <i>Information Sciences</i> , 2008 , 178, 3075-309	5 7.7	66	
547	Tackling high dimensional nonseparable optimization problems by cooperatively coevolving particle swarms 2009 ,		65	
546	Analysis of Computational Time of Simple Estimation of Distribution Algorithms. <i>IEEE Transactions on Evolutionary Computation</i> , 2010 , 14, 1-22	15.6	64	
545	Recent Advances in Evolutionary Computation. <i>Journal of Computer Science and Technology</i> , 2006 , 21, 1-18	1.7	64	
544	Behavioral diversity, choices and noise in the iterated prisoner's dilemma. <i>IEEE Transactions on Evolutionary Computation</i> , 2005 , 9, 540-551	15.6	64	
543	Dynamical characteristics of pre-epileptic seizures in rats with recurrence quantification analysis. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2004 , 333, 164-171	2.3	64	
542	Materialized view selection as constrained evolutionary optimization. <i>IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews</i> , 2003 , 33, 458-467		64	
541	Linear dimensionality reduction using relevance weighted LDA. Pattern Recognition, 2005, 38, 485-493	7.7	64	
540	Evolutionary path control strategy for solving many-objective optimization problem. <i>IEEE Transactions on Cybernetics</i> , 2015 , 45, 702-15	10.2	63	
539	Neural-Based Learning Classifier Systems. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2008 , 20, 26-39	4.2	63	
538	Synchronization measurement of multiple neuronal populations. <i>Journal of Neurophysiology</i> , 2007 , 98, 3341-8	3.2	63	
537	Dynamic Multiobjectives Optimization With a Changing Number of Objectives. <i>IEEE Transactions on Evolutionary Computation</i> , 2018 , 22, 157-171	15.6	62	
536	2009,		62	
535	Scaling Up Estimation of Distribution Algorithms for Continuous Optimization. <i>IEEE Transactions on Evolutionary Computation</i> , 2013 , 17, 797-822	15.6	61	
534	Multi-Objective Approaches to Optimal Testing Resource Allocation in Modular Software Systems. IEEE Transactions on Reliability, 2010, 59, 563-575	4.6	61	

533	. IEEE Transactions on Evolutionary Computation, 2015, 19, 188-200	15.6	60
532	Evolutionary Multiobjective Optimization-Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection. <i>IEEE Transactions on Evolutionary Computation</i> , 2018 , 22, 692-706	15.6	60
531	Reusing Genetic Programming for Ensemble Selection in Classification of Unbalanced Data. <i>IEEE Transactions on Evolutionary Computation</i> , 2014 , 18, 893-908	15.6	60
530	Fractal spectral analysis of pre-epileptic seizures in terms of criticality. <i>Journal of Neural Engineering</i> , 2005 , 2, 11-6	5	60
529	A Survey of Self-Awareness and Its Application in Computing Systems 2011,		59
528	Self-adaptive differential evolution with neighborhood search 2008,		59
527	Gene selection algorithms for microarray data based on least squares support vector machine. <i>BMC Bioinformatics</i> , 2006 , 7, 95	3.6	59
526	Bagging and boosting negatively correlated neural networks. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2008 , 38, 771-84		58
525	Making a Difference to Differential Evolution 2007 , 397-414		58
524	Evolutionary Computation: Theory and Applications 1999 ,		57
524 523	Evolutionary Computation: Theory and Applications 1999, How to Read Many-Objective Solution Sets in Parallel Coordinates [Educational Forum]. IEEE Computational Intelligence Magazine, 2017, 12, 88-100	5.6	57
	How to Read Many-Objective Solution Sets in Parallel Coordinates [Educational Forum]. <i>IEEE</i>	5.6 15.6	56
523	How to Read Many-Objective Solution Sets in Parallel Coordinates [Educational Forum]. <i>IEEE Computational Intelligence Magazine</i> , 2017 , 12, 88-100 Analysis of the \$(1+1)\$-EA for Finding Approximate Solutions to Vertex Cover Problems. <i>IEEE</i>		56
523 522	How to Read Many-Objective Solution Sets in Parallel Coordinates [Educational Forum]. <i>IEEE Computational Intelligence Magazine</i> , 2017 , 12, 88-100 Analysis of the \$(1+1)\$-EA for Finding Approximate Solutions to Vertex Cover Problems. <i>IEEE Transactions on Evolutionary Computation</i> , 2009 , 13, 1006-1029 Smart use of computational resources based on contribution for cooperative co-evolutionary		56 56
523 522 521	How to Read Many-Objective Solution Sets in Parallel Coordinates [Educational Forum]. <i>IEEE Computational Intelligence Magazine</i> , 2017 , 12, 88-100 Analysis of the \$(1+1)\$-EA for Finding Approximate Solutions to Vertex Cover Problems. <i>IEEE Transactions on Evolutionary Computation</i> , 2009 , 13, 1006-1029 Smart use of computational resources based on contribution for cooperative co-evolutionary algorithms 2011 , Metaheuristics for agricultural land use optimization. A review. <i>Agronomy for Sustainable</i>	15.6	565656
523 522 521 520	How to Read Many-Objective Solution Sets in Parallel Coordinates [Educational Forum]. IEEE Computational Intelligence Magazine, 2017, 12, 88-100 Analysis of the \$(1+1)\$-EA for Finding Approximate Solutions to Vertex Cover Problems. IEEE Transactions on Evolutionary Computation, 2009, 13, 1006-1029 Smart use of computational resources based on contribution for cooperative co-evolutionary algorithms 2011, Metaheuristics for agricultural land use optimization. A review. Agronomy for Sustainable Development, 2015, 35, 975-998 Turning High-Dimensional Optimization Into Computationally Expensive Optimization. IEEE	15.6 6.8	56565655
523522521520519	How to Read Many-Objective Solution Sets in Parallel Coordinates [Educational Forum]. IEEE Computational Intelligence Magazine, 2017, 12, 88-100 Analysis of the \$(1+1)\$-EA for Finding Approximate Solutions to Vertex Cover Problems. IEEE Transactions on Evolutionary Computation, 2009, 13, 1006-1029 Smart use of computational resources based on contribution for cooperative co-evolutionary algorithms 2011, Metaheuristics for agricultural land use optimization. A review. Agronomy for Sustainable Development, 2015, 35, 975-998 Turning High-Dimensional Optimization Into Computationally Expensive Optimization. IEEE Transactions on Evolutionary Computation, 2018, 22, 143-156 Universal multi-objective function for optimising superplastic-damage constitutive equations.	15.6 6.8 15.6	5656565555

515	Robust Online Time Series Prediction with Recurrent Neural Networks 2016 ,		54
514	Software effort estimation as a multiobjective learning problem. <i>ACM Transactions on Software Engineering and Methodology</i> , 2013 , 22, 1-32	3.3	53
513	A note on problem difficulty measures in black-box optimization: classification, realizations and predictability. <i>Evolutionary Computation</i> , 2007 , 15, 435-43	4.3	53
512	A hybrid Hopfield network-genetic algorithm approach for the terminal assignment problem. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2004 , 34, 2343-53		53
511	Negatively Correlated Search. <i>IEEE Journal on Selected Areas in Communications</i> , 2016 , 34, 542-550	14.2	53
510	Meta-Heuristic Algorithms in Car Engine Design: A Literature Survey. <i>IEEE Transactions on Evolutionary Computation</i> , 2015 , 19, 609-629	15.6	52
509	An empirical study of genetic operators in genetic algorithms. <i>Microprocessing and Microprogramming</i> , 1993 , 38, 707-714		52
508	Evolutionary Optimization. Profiles in Operations Research, 2002,	1	52
507	A Memetic Algorithm for Periodic Capacitated Arc Routing Problem. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2011 , 41, 1654-67		51
506	A New Multi-objective Evolutionary Optimisation Algorithm: The Two-Archive Algorithm 2006,		51
505	A new evolutionary approach to cutting stock problems with and without contiguity. <i>Computers and Operations Research</i> , 2002 , 29, 1641-1659	4.6	51
504	Simulated annealing with extended neighbourhood. <i>International Journal of Computer Mathematics</i> , 1991 , 40, 169-189	1.2	51
503	Population-based Algorithm Portfolios with automated constituent algorithms selection. <i>Information Sciences</i> , 2014 , 279, 94-104	7.7	49
502	Dynamic combinatorial optimisation problems: an analysis of the subset sum problem. <i>Soft Computing</i> , 2011 , 15, 1723-1734	3.5	49
501	Static, Dynamic, and Adaptive Heterogeneity in Distributed Smart Camera Networks. <i>ACM Transactions on Autonomous and Adaptive Systems</i> , 2015 , 10, 1-30	1.2	48
500	Negative correlation learning for classification ensembles 2010,		48
499	Clustering and learning Gaussian distribution for continuous optimization. <i>IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews</i> , 2005 , 35, 195-204		48
498	A Scalable Indicator-Based Evolutionary Algorithm for Large-Scale Multiobjective Optimization. <i>IEEE Transactions on Evolutionary Computation</i> , 2019 , 23, 525-537	15.6	47

497	Unified eigen analysis on multivariate Gaussian based estimation of distribution algorithms. **Information Sciences**, 2008 , 178, 3000-3023	7	46
496	Robust route optimization for gritting/salting trucks: a CERCIA experience. <i>IEEE Computational Intelligence Magazine</i> , 2006 , 1, 6-9	5	46
495	Benchmarking Optimization Algorithms: An Open Source Framework for the Traveling Salesman Problem. <i>IEEE Computational Intelligence Magazine</i> , 2014 , 9, 40-52	5	45
494	Model-based kernel for efficient time series analysis 2013,		45
493	A new approach for analyzing average time complexity of population-based evolutionary algorithms on unimodal problems. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2009 , 39, 1092-106		45
492	Differential evolution for high-dimensional function optimization 2007,		45
491	A learning framework for online class imbalance learning 2013,		44
490	The impact of parameter tuning on software effort estimation using learning machines 2013,		44
489	A Hybrid Ant Colony Optimization Algorithm for the Extended Capacitated Arc Routing Problem. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2011 , 41, 1110-23		44
488	Concept Drift Adaptation by Exploiting Historical Knowledge. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2018 , 29, 4822-4832	0.3	43
487	On the Impact of Mutation-Selection Balance on the Runtime of Evolutionary Algorithms. <i>IEEE Transactions on Evolutionary Computation</i> , 2012 , 16, 225-241	:.6	43
486	Dynamic adaptive search based software engineering 2012 ,		43
485	Dynamic evolutionary optimisation 2009,		43
484	A global repair operator for capacitated arc routing problem. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2009 , 39, 723-34		43
483	Multilevel cooperative coevolution for large scale optimization 2008,		43
482	Multiple Choices and Reputation in Multiagent Interactions. <i>IEEE Transactions on Evolutionary</i> Computation, 2007 , 11, 689-711	:.6	43
481	Objective reduction based on nonlinear correlation information entropy. <i>Soft Computing</i> , 2016 , 20, 2393-32	4 07	42
480	CO-EVOLUTION IN ITERATED PRISONER'S DILEMMA WITH INTERMEDIATE LEVELS OF COOPERATION: APPLICATION TO MISSILE DEFENSE. International Journal of Computational 1.2 Intelligence and Applications, 2002 , 02, 83-107	2	42

479	A Survey and Taxonomy of Self-Aware and Self-Adaptive Cloud Autoscaling Systems. <i>ACM Computing Surveys</i> , 2018 , 51, 1-40	13.4	40
478	Architectural Aspects of Self-Aware and Self-Expressive Computing Systems: From Psychology to Engineering. <i>Computer</i> , 2015 , 48, 62-70	1.6	39
477	Model-based evolutionary algorithms: a short survey. Complex & Intelligent Systems, 2018, 4, 283-292	7.1	39
476	Socio-economic vision graph generation and handover in distributed smart camera networks. <i>ACM Transactions on Sensor Networks</i> , 2014 , 10, 1-24	2.9	39
475	On the approximation ability of evolutionary optimization with application to minimum set cover. <i>Artificial Intelligence</i> , 2012 , 180-181, 20-33	3.6	39
474	Performance of infeasibility driven evolutionary algorithm (IDEA) on constrained dynamic single objective optimization problems 2009 ,		39
473	An Evolutionary Approach to the Multidepot Capacitated Arc Routing Problem. <i>IEEE Transactions on Evolutionary Computation</i> , 2010 , 14, 356-374	15.6	39
472	Fast evolution strategies. Lecture Notes in Computer Science, 1997 , 149-161	0.9	39
471	Multi-objective Improvement of Software Using Co-evolution and Smart Seeding. <i>Lecture Notes in Computer Science</i> , 2008 , 61-70	0.9	39
470	Measuring Generalization Performance in Coevolutionary Learning. <i>IEEE Transactions on Evolutionary Computation</i> , 2008 , 12, 479-505	15.6	39
469	. IEEE Transactions on Evolutionary Computation, 2016 , 20, 96-109	15.6	38
468	Semisupervised classification with cluster regularization. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2012 , 23, 1779-92	10.3	38
467	Fast Evolutionary Algorithms. <i>Natural Computing Series</i> , 2003 , 45-94	2.5	38
466	A clustering-ranking method for many-objective optimization. <i>Applied Soft Computing Journal</i> , 2015 , 35, 681-694	7.5	37
465	Graph-Based Approaches for Over-Sampling in the Context of Ordinal Regression. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2015 , 27, 1233-1245	4.2	37
464	R-Metric: Evaluating the Performance of Preference-Based Evolutionary Multiobjective Optimization Using Reference Points. <i>IEEE Transactions on Evolutionary Computation</i> , 2018 , 22, 821-835	15.6	37
463	Multiline Distance Minimization: A Visualized Many-Objective Test Problem Suite. <i>IEEE Transactions on Evolutionary Computation</i> , 2018 , 22, 61-78	15.6	37
462	A new self-adaptation scheme for differential evolution. <i>Neurocomputing</i> , 2014 , 146, 2-16	5.4	37

461	A new constructive algorithm for architectural and functional adaptation of artificial neural networks. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2009 , 39, 1590-605		37
460	Hybrid meta-heuristics algorithms for task assignment in heterogeneous computing systems. <i>Computers and Operations Research</i> , 2006 , 33, 820-835	4.6	37
459	How well do multi-objective evolutionary algorithms scale to large problems 2007,		37
458	Benchmarking and solving dynamic constrained problems 2009 ,		36
457	Cognitive fault diagnosis in Tennessee Eastman Process using learning in the model space. <i>Computers and Chemical Engineering</i> , 2014 , 67, 33-42	4	35
456	How to make best use of cross-company data in software effort estimation? 2014,		35
455	Concept drift detection for online class imbalance learning 2013,		35
454	Robust optimization over time 🖪 new perspective on dynamic optimization problems 2010,		35
453	A multi-objective approach to Redundancy Allocation Problem in parallel-series systems 2009,		35
452	An experimental study of hybridizing cultural algorithms and local search. <i>International Journal of Neural Systems</i> , 2008 , 18, 1-17	6.2	35
451	Multi-scale statistical process monitoring in machining. <i>IEEE Transactions on Industrial Electronics</i> , 2005 , 52, 924-927	8.9	35
450	The GRD chip: genetic reconfiguration of DSPs for neural network processing. <i>IEEE Transactions on Computers</i> , 1999 , 48, 628-639	2.5	35
449	Improving Generalization Performance in Co-Evolutionary Learning. <i>IEEE Transactions on Evolutionary Computation</i> , 2012 , 16, 70-85	15.6	34
448	Adapting Self-Adaptive Parameters in Evolutionary Algorithms. <i>Applied Intelligence</i> , 2001 , 15, 171-180	4.9	34
447	Multiobjective genetic programming for maximizing ROC performance. <i>Neurocomputing</i> , 2014 , 125, 102	25148	33
446	ONLINE CLASS IMBALANCE LEARNING AND ITS APPLICATIONS IN FAULT DETECTION. <i>International Journal of Computational Intelligence and Applications</i> , 2013 , 12, 1340001	1.2	33
445	A new evolutionary algorithm with structure mutation for the maximum balanced biclique problem. <i>IEEE Transactions on Cybernetics</i> , 2015 , 45, 1040-53	10.2	32
444	Sparse approximation through boosting for learning large scale kernel machines. <i>IEEE Transactions on Neural Networks</i> , 2010 , 21, 883-94		32

443	. IEEE Transactions on Reliability, 2010 , 59, 754-765	4.6	32
442	Finding approximate solutions to NP-hard problems by neural networks is hard. <i>Information Processing Letters</i> , 1992 , 41, 93-98	0.8	32
441	Integration of Preferences in Decomposition Multiobjective Optimization. <i>IEEE Transactions on Cybernetics</i> , 2018 , 48, 3359-3370	10.2	32
440	Every niching method has its niche: Fitness sharing and implicit sharing compared. <i>Lecture Notes in Computer Science</i> , 1996 , 398-407	0.9	32
439	Regularity Model for Noisy Multiobjective Optimization. <i>IEEE Transactions on Cybernetics</i> , 2016 , 46, 19	97 <u>1</u> 2009	9 31
438	Scalable Graph-Based Semi-Supervised Learning through Sparse Bayesian Model. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2017 , 29, 2758-2771	4.2	31
437	The Impact of Payoff Function and Local Interaction on the N-Player Iterated Prisoner's Dilemma. <i>Knowledge and Information Systems</i> , 2000 , 2, 461-478	2.4	31
436	A Scalable Approach to Capacitated Arc Routing Problems Based on Hierarchical Decomposition. <i>IEEE Transactions on Cybernetics</i> , 2017 , 47, 3928-3940	10.2	30
435	On the Easiest and Hardest Fitness Functions. <i>IEEE Transactions on Evolutionary Computation</i> , 2015 , 19, 295-305	15.6	29
434	On investigation of interdependence between sub-problems of the Travelling Thief Problem. <i>Soft Computing</i> , 2016 , 20, 157-172	3.5	29
433	Can cross-company data improve performance in software effort estimation? 2012,		29
432	FEMOSAA. ACM Transactions on Software Engineering and Methodology, 2018 , 27, 1-50	3.3	29
431	Interactive ontology matching based on partial reference alignment. <i>Applied Soft Computing Journal</i> , 2018 , 72, 355-370	7.5	28
430	Similarities in precursory features in seismic shocks and epileptic seizures. <i>Europhysics Letters</i> , 2005 , 69, 657-663	1.6	28
429	CBCC3 IA contribution-based cooperative co-evolutionary algorithm with improved exploration/exploitation balance 2016 ,		27
428	Dynamic Software Project Scheduling through a Proactive-Rescheduling Method. <i>IEEE Transactions on Software Engineering</i> , 2016 , 42, 658-686	3.5	27
427	Co-evolutionary automatic programming for software development. <i>Information Sciences</i> , 2014 , 259, 412-432	7.7	27
426	Analysis of population-based evolutionary algorithms for the vertex cover problem 2008 ,		27

425	Evolutionary stability in the n-person iterated prisoner's dilemma. <i>BioSystems</i> , 1996 , 37, 189-97	1.9	27
424	Ensemble of Classifiers Based on Multiobjective Genetic Sampling for Imbalanced Data. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2020 , 32, 1104-1115	4.2	27
423	Promises and challenges of Evolvable hardware. Lecture Notes in Computer Science, 1997, 55-78	0.9	27
422	A multi-agent evolutionary algorithm for software module clustering problems. <i>Soft Computing</i> , 2017 , 21, 3415-3428	3.5	26
421	Architecting Self-Aware Software Systems 2014 ,		26
420	Efficient probabilistic classification vector machine with incremental basis function selection. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2014 , 25, 356-69	10.3	26
419	A New Memetic Algorithm With Fitness Approximation for the Defect-Tolerant Logic Mapping in Crossbar-Based Nanoarchitectures. <i>IEEE Transactions on Evolutionary Computation</i> , 2014 , 18, 846-859	15.6	26
418	2009,		26
417	Evolving edited k-nearest neighbor classifiers. <i>International Journal of Neural Systems</i> , 2008 , 18, 459-67	6.2	26
416	DIVACE: Diverse and Accurate Ensemble Learning Algorithm. <i>Lecture Notes in Computer Science</i> , 2004 , 619-625	0.9	26
415	Evolutionary Large-Scale Multiobjective Optimization for Ratio Error Estimation of Voltage Transformers. <i>IEEE Transactions on Evolutionary Computation</i> , 2020 , 24, 868-881	15.6	25
414	Negative correlation ensemble learning for ordinal regression. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2013 , 24, 1836-49	10.3	25
413	Crossover can be constructive when computing unique inputButput sequences. <i>Soft Computing</i> , 2011 , 15, 1675-1687	3.5	25
412	Dynamic Time-Linkage Problems Revisited. <i>Lecture Notes in Computer Science</i> , 2009 , 735-744	0.9	25
411	Layered Ensemble Architecture for Time Series Forecasting. <i>IEEE Transactions on Cybernetics</i> , 2016 , 46, 270-83	10.2	24
410	An efficient local search heuristic with row weighting for the unicost set covering problem. <i>European Journal of Operational Research</i> , 2015 , 246, 750-761	5.6	24
409	What Weights Work for You? Adapting Weights for Any Pareto Front Shape in Decomposition-Based Evolutionary Multiobjective Optimisation. <i>Evolutionary Computation</i> , 2020 , 28, 227-253	4.3	24
408	. IEEE Transactions on Evolutionary Computation, 2013 , 17, 155-164	15.6	24

407	Optimal relay placement for lifetime maximization in wireless underground sensor networks. <i>Information Sciences</i> , 2017 , 418-419, 463-479	7.7	24	
406	Capacitated arc routing problem in uncertain environments 2010,		24	
405	Relationship Between Generalization and Diversity in Coevolutionary Learning. <i>IEEE Transactions on Games</i> , 2009 , 1, 214-232		24	
404	. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2005 , 35, 266-271		24	
403	Multiobjective Learning in the Model Space for Time Series Classification. <i>IEEE Transactions on Cybernetics</i> , 2019 , 49, 918-932	10.2	24	
402	Binarization With Boosting and Oversampling for Multiclass Classification. <i>IEEE Transactions on Cybernetics</i> , 2016 , 46, 1078-91	10.2	23	
401	. IEEE Transactions on Software Engineering, 2014 , 40, 83-102	3.5	23	
400	Cooperative Coevolutionary Algorithm-Based Model Predictive Control Guaranteeing Stability of Multirobot Formation. <i>IEEE Transactions on Control Systems Technology</i> , 2015 , 23, 37-51	4.8	22	
399	Negative correlation in incremental learning. <i>Natural Computing</i> , 2009 , 8, 289-320	1.3	22	
398	Solving equations by hybrid evolutionary computation techniques. <i>IEEE Transactions on Evolutionary Computation</i> , 2000 , 4, 295-304	15.6	22	
397	Automatic modularization by speciation		22	
396	Scaling Up Dynamic Optimization Problems: A Divide-and-Conquer Approach. <i>IEEE Transactions on Evolutionary Computation</i> , 2020 , 24, 1-15	15.6	22	
395	Robust twin boosting for feature selection from high-dimensional omics data with label noise. <i>Information Sciences</i> , 2015 , 291, 1-18	7.7	21	
394	On the Effectiveness of Sampling for Evolutionary Optimization in Noisy Environments. <i>Evolutionary Computation</i> , 2018 , 26, 237-267	4.3	21	
393	Improving Efficiency of Heuristics for the Large Scale Traveling Thief Problem. <i>Lecture Notes in Computer Science</i> , 2014 , 631-643	0.9	21	
392	Diversity Guided Evolutionary Programming: A novel approach for continuous optimization. <i>Applied Soft Computing Journal</i> , 2012 , 12, 1693-1707	7.5	21	
391	An analysis of evolutionary algorithms based on neighbourhood and step sizes. <i>Lecture Notes in Computer Science</i> , 1997 , 297-307	0.9	21	
390	Why more choices cause less cooperation in iterated prisoner's dilemma		21	

389	Classification-assisted Differential Evolution for computationally expensive problems 2011,		20
388	Resource allocation in decentralised computational systems: an evolutionary market-based approach. <i>Autonomous Agents and Multi-Agent Systems</i> , 2010 , 21, 143-171	2	20
387	Evolutionary Design of Digital Filters With Application to Subband Coding and Data Transmission. <i>IEEE Transactions on Signal Processing</i> , 2007 , 55, 1193-1203	4.8	20
386	A Memetic Algorithm for test data generation of Object-Oriented software 2007 ,		20
385	Optimal switch location in mobile communication networks using hybrid genetic algorithms. <i>Applied Soft Computing Journal</i> , 2008 , 8, 1486-1497	7.5	20
384	Coevolving programs and unit tests from their specification 2007,		20
383	Robust Optimization Over Time: Problem Difficulties and Benchmark Problems. <i>IEEE Transactions on Evolutionary Computation</i> , 2015 , 19, 731-745	15.6	19
382	Addressing the EU sovereign ratings using an ordinal regression approach. <i>IEEE Transactions on Cybernetics</i> , 2013 , 43, 2228-40	10.2	19
381	Improved memetic algorithm for Capacitated Arc Routing Problem 2009,		19
380	Robust Solution of Salting Route Optimisation Using Evolutionary Algorithms		19
380 379	Robust Solution of Salting Route Optimisation Using Evolutionary Algorithms Multi-network evolutionary systems and automatic decomposition of complex problems. International Journal of General Systems, 2006, 35, 259-274	2.1	19
	Multi-network evolutionary systems and automatic decomposition of complex problems.	2.1 4.6	
379	Multi-network evolutionary systems and automatic decomposition of complex problems. International Journal of General Systems, 2006, 35, 259-274 Constraint Handling in NSGA-II for Solving Optimal Testing Resource Allocation Problems. IEEE		19
379 37 ⁸	Multi-network evolutionary systems and automatic decomposition of complex problems. International Journal of General Systems, 2006, 35, 259-274 Constraint Handling in NSGA-II for Solving Optimal Testing Resource Allocation Problems. IEEE Transactions on Reliability, 2017, 66, 1193-1212 SNR-Constrained Heuristics for Optimizing the Scaling Parameter of Robust Audio Watermarking.	4.6	19 18
379 378 377	Multi-network evolutionary systems and automatic decomposition of complex problems. International Journal of General Systems, 2006, 35, 259-274 Constraint Handling in NSGA-II for Solving Optimal Testing Resource Allocation Problems. IEEE Transactions on Reliability, 2017, 66, 1193-1212 SNR-Constrained Heuristics for Optimizing the Scaling Parameter of Robust Audio Watermarking. IEEE Transactions on Multimedia, 2018, 20, 2631-2644	4.6	19 18 18
379 378 377 376	Multi-network evolutionary systems and automatic decomposition of complex problems. International Journal of General Systems, 2006, 35, 259-274 Constraint Handling in NSGA-II for Solving Optimal Testing Resource Allocation Problems. IEEE Transactions on Reliability, 2017, 66, 1193-1212 SNR-Constrained Heuristics for Optimizing the Scaling Parameter of Robust Audio Watermarking. IEEE Transactions on Multimedia, 2018, 20, 2631-2644 On the effects of seeding strategies 2018, DiME: a scalable disease module identification algorithm with application to glioma progression.	4.6 6.6	19 18 18
379 378 377 376 375	Multi-network evolutionary systems and automatic decomposition of complex problems. International Journal of General Systems, 2006, 35, 259-274 Constraint Handling in NSGA-II for Solving Optimal Testing Resource Allocation Problems. IEEE Transactions on Reliability, 2017, 66, 1193-1212 SNR-Constrained Heuristics for Optimizing the Scaling Parameter of Robust Audio Watermarking. IEEE Transactions on Multimedia, 2018, 20, 2631-2644 On the effects of seeding strategies 2018, DiME: a scalable disease module identification algorithm with application to glioma progression. PLos ONE, 2014, 9, e86693 Runtime Analysis of Evolutionary Algorithms for Discrete Optimization. Theoretical Computer	4.6 6.6	19 18 18 18

371	Evolutionary algorithms and the Vertex Cover problem 2007 ,		18	
370	Digital filter design using multiple pareto fronts. <i>Soft Computing</i> , 2004 , 8, 332-343	3.5	18	
369	Dynamic salting route optimisation using evolutionary computation		18	•
368	Fitness-Probability Cloud and a Measure of Problem Hardness for Evolutionary Algorithms. <i>Lecture Notes in Computer Science</i> , 2011 , 108-117	0.9	18	
367	. IEEE Transactions on Evolutionary Computation, 2016 , 1-1	15.6	18	
366	. IEEE Transactions on Evolutionary Computation, 2018, 22, 550-563	15.6	18	
365	A Parallel Divide-and-Conquer-Based Evolutionary Algorithm for Large-Scale Optimization. <i>IEEE Access</i> , 2019 , 7, 163105-163118	3.5	17	
364	Combining learning in model space fault diagnosis with data validation/reconstruction: Application to the Barcelona water network. <i>Engineering Applications of Artificial Intelligence</i> , 2014 , 30, 18-29	7.2	17	
363	An improved Two Archive Algorithm for Many-Objective optimization 2014,		17	•
362	When is an estimation of distribution algorithm better than an evolutionary algorithm? 2009,		17	
361	Direction matters in high-dimensional optimisation 2008,		17	
360	Assignment of cells to switches in a cellular mobile network using a hybrid Hopfield network-genetic algorithm approach. <i>Applied Soft Computing Journal</i> , 2008 , 8, 216-224	7.5	17	
359	Evolving Neural Network Ensembles by Minimization of Mutual Information. <i>International Journal of Hybrid Intelligent Systems</i> , 2004 , 1, 12-21	0.9	17	•
358	An iterative pseudo-gap enumeration approach for the Multidimensional Multiple-choice Knapsack Problem. <i>European Journal of Operational Research</i> , 2017 , 260, 1-11	5.6	16	
357	Predicting Car Park Occupancy Rates in Smart Cities. Lecture Notes in Computer Science, 2017, 107-117	0.9	16	•
356	Meta-Heuristic Combining Prior Online and Offline Information for the Quadratic Assignment Problem. <i>IEEE Transactions on Cybernetics</i> , 2014 , 44, 429-44	10.2	16	
355	Runtime analysis of the (1 + 1) EA on computing unique input output sequences. <i>Information Sciences</i> , 2014 , 259, 510-531	7.7	16	
354	Dynamic Multi-objective Optimization: A Survey of the State-of-the-Art. <i>Studies in Computational Intelligence</i> , 2013 , 85-106	0.8	16	

353	Touchable Computing: Computing-Inspired Bio-Detection. <i>IEEE Transactions on Nanobioscience</i> , 2017 , 16, 810-821	3.4	16
352	A Cluster-Based Semisupervised Ensemble for Multiclass Classification. <i>IEEE Transactions on Emerging Topics in Computational Intelligence</i> , 2017 , 1, 408-420	4.1	16
351	Multi-colony ant algorithms for the dynamic travelling salesman problem 2014,		16
350	Learning to be Different: Heterogeneity and Efficiency in Distributed Smart Camera Networks 2013		16
349	A socio-economic approach to online vision graph generation and handover in distributed smart camera networks 2011 ,		16
348	Estimation of distribution algorithms for testing object oriented software 2007,		16
347	Co-evolutionary modular neural networks for automatic problem decomposition		16
346	An experimental investigation of self-adaptation in evolutionary programming. <i>Lecture Notes in Computer Science</i> , 1998 , 291-300	0.9	16
345	A dilemma for fitness sharing with a scaling function		16
344	A Benchmark Generator for Dynamic Permutation-Encoded Problems. <i>Lecture Notes in Computer Science</i> , 2012 , 508-517	0.9	16
343	An Efficient Recursive Differential Grouping for Large-Scale Continuous Problems. <i>IEEE Transactions on Evolutionary Computation</i> , 2021 , 25, 159-171	15.6	16
342	Nadir point estimation for many-objective optimization problems based on emphasized critical regions. <i>Soft Computing</i> , 2017 , 21, 2283-2295	3.5	15
341	Finding Robust Solutions to Dynamic Optimization Problems. <i>Lecture Notes in Computer Science</i> , 2013 , 616-625	0.9	15
340	An analysis of multi-objective evolutionary algorithms for training ensemble models based on different performance measures in software effort estimation 2013 ,		15
339	A principled evaluation of ensembles of learning machines for software effort estimation 2011,		15
338	An Efficient Evolutionary Approach to Parameter Identification in a Building Thermal Model. <i>IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews</i> , 2012 , 42, 957-969		15
337	Neuronal population oscillations of rat hippocampus during epileptic seizures. <i>Neural Networks</i> , 2008 , 21, 1105-11	9.1	15
336	Following the path of evolvable hardware. Communications of the ACM, 1999, 42, 46-49	2.5	15

(2013-2000)

335	Application of Genetic Algorithm and K-Nearest Neighbour Method in Real World Medical Fraud Detection Problem. <i>Journal of Advanced Computational Intelligence and Intelligent Informatics</i> , 2000 0.4, 4, 130-137	ļ r	15
334	Crossover Can Be Constructive When Computing Unique Input Output Sequences. <i>Lecture Notes in Computer Science</i> , 2008 , 595-604)	15
333	Interactive Decomposition Multiobjective Optimization Via Progressively Learned Value Functions. <i>IEEE Transactions on Fuzzy Systems</i> , 2019 , 27, 849-860	1	15
332	Trade-Off Between Diversity and Accuracy in Ensemble Generation 2006 , 429-464		15
331	Diversity exploration and negative correlation learning on imbalanced data sets 2009,		14
330	A Memetic Genetic Programming with decision tree-based local search for classification problems 2011 ,		14
329	Computational intelligence in economic games and policy design [Research Frontier]. <i>IEEE Computational Intelligence Magazine</i> , 2008 , 3, 22-26	,	14
328	Evolutionary search and constraint violations		14
327	Towards designing neural network ensembles by evolution. <i>Lecture Notes in Computer Science</i> , 1998, 623-632)	14
326	An experimental study of N-Person Iterated Prisoner's Dilemma games. <i>Lecture Notes in Computer Science</i> , 1995 , 90-108)	14
325	Dynamic selection of evolutionary operators based on online learning and fitness landscape analysis. <i>Soft Computing</i> , 2016 , 20, 3889-3914		14
324	Multiobjective optimization for interwoven systems. <i>Journal of Multi-Criteria Decision Analysis</i> , 2017 , 24, 71-81		13
323	Parallel population-based algorithm portfolios: An empirical study. <i>Neurocomputing</i> , 2017 , 247, 115-125 _{5.4}	-	13
322	Probabilistic Feature Selection and Classification Vector Machine. <i>ACM Transactions on Knowledge Discovery From Data</i> , 2019 , 13, 1-27		13
321	Heuristic evolution with genetic programming for traveling thief problem 2015,		13
320	Does Preference Always Help? A Holistic Study on Preference-Based Evolutionary Multiobjective Optimization Using Reference Points. <i>IEEE Transactions on Evolutionary Computation</i> , 2020 , 24, 1078-1096.	6	13
319	A critical review of 2018 ,		13
318	A memetic algorithm for uncertain Capacitated Arc Routing Problems 2013,		13

317	Self-optimizing architecture for ensuring Quality Attributes in the cloud 2009,		13
316	Theoretical Runtime Analyses of Search Algorithms on the Test Data Generation for the Triangle Classification Problem 2008 ,		13
315	Teaching Advanced Features of Evolutionary Algorithms Using Japanese Puzzles. <i>IEEE Transactions on Education</i> , 2007 , 50, 151-156	2.1	13
314	Self-Adapting Payoff Matrices in Repeated Interactions 2006,		13
313	Target shape design optimization by evolving B-splines with cooperative coevolution. <i>Applied Soft Computing Journal</i> , 2016 , 48, 672-682	7.5	13
312	Which models of the past are relevant to the present? A software effort estimation approach to exploiting useful past models. <i>Automated Software Engineering</i> , 2017 , 24, 499-542	1.5	12
311	Runtime analysis of search heuristics on software engineering problems. <i>Frontiers of Computer Science</i> , 2009 , 3, 64-72		12
310	Analysis of premalignant pancreatic cancer mass spectrometry data for biomarker selection using a group search optimizer. <i>Transactions of the Institute of Measurement and Control</i> , 2012 , 34, 668-676	1.8	12
309	Robust Salting Route Optimization Using Evolutionary Algorithms. <i>Studies in Computational Intelligence</i> , 2007 , 497-517	0.8	12
308	Dynamic Selection of Evolutionary Algorithm Operators Based on Online Learning and Fitness Landscape Metrics. <i>Lecture Notes in Computer Science</i> , 2014 , 359-370	0.9	12
307	Attributes of Dynamic Combinatorial Optimisation. <i>Lecture Notes in Computer Science</i> , 2008 , 442-451	0.9	12
306	Surrogate models in evolutionary single-objective optimization: A new taxonomy and experimental study. <i>Information Sciences</i> , 2021 , 562, 414-437	7.7	12
305	Standing on the shoulders of giants: Seeding search-based multi-objective optimization with prior knowledge for software service composition. <i>Information and Software Technology</i> , 2019 , 114, 155-175	3.4	11
304	A hybrid clustering and evolutionary approach for wireless underground sensor network lifetime maximization. <i>Information Sciences</i> , 2019 , 504, 372-393	7.7	11
303	Maximizing submodular or monotone approximately submodular functions by multi-objective evolutionary algorithms. <i>Artificial Intelligence</i> , 2019 , 275, 279-294	3.6	11
302	Evolutionary and principled search strategies for sensornet protocol optimization. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2012 , 42, 163-80		11
301	CamSim: A Distributed Smart Camera Network Simulator 2013 ,		11
300	Recurring two-stage evolutionary programming: a novel approach for numeric optimization. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2011 , 41, 1352-65		11

299	Non-uniform mutation rates for problems with unknown solution lengths 2011,		11
298	Uncovering delayed patterns in noisy and irregularly sampled time series: An astronomy application. <i>Pattern Recognition</i> , 2010 , 43, 1165-1179	7.7	11
297	The Dynamic Knapsack Problem Revisited: A New Benchmark Problem for Dynamic Combinatorial Optimisation. <i>Lecture Notes in Computer Science</i> , 2009 , 745-754	0.9	11
296	Bandit-based cooperative coevolution for tackling contribution imbalance in large-scale optimization problems. <i>Applied Soft Computing Journal</i> , 2019 , 76, 265-281	7.5	11
295	Solving Transit Network Design Problem Using Many-Objective Evolutionary Approach. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2019 , 20, 3952-3963	6.1	11
294	Uncertainty analysis of wind power probability density forecasting based on cubic spline interpolation and support vector quantile regression. <i>Neurocomputing</i> , 2021 , 430, 121-137	5.4	11
293	A Survey of Evolutionary Continuous Dynamic Optimization Over Two Decades Part A. <i>IEEE Transactions on Evolutionary Computation</i> , 2021 , 25, 609-629	15.6	11
292	QoS-aware long-term based service composition in cloud computing 2015 ,		10
291	Frequency Fitness Assignment. IEEE Transactions on Evolutionary Computation, 2014, 18, 226-243	15.6	10
290	Decomposing Large-Scale Capacitated Arc Routing Problems using a random route grouping method 2013 ,		10
289	Model representation and cooperative coevolution for finite-state machine evolution 2014,		10
288	Multi-start JADE with knowledge transfer for numerical optimization 2009,		10
287	Evolutionary algorithms for the project scheduling problem 2012,		10
286	Choosing selection pressure for wide-gap problems. <i>Theoretical Computer Science</i> , 2010 , 411, 926-934	1.1	10
285	Target shape design optimization by evolving splines 2007,		10
284	Constrained Evolutionary Optimization 2003 , 87-113		10
283	Using multiple representations in evolutionary algorithms		10
282	An Empirical Investigation of the Optimality and Monotonicity Properties of Multiobjective Archiving Methods. <i>Lecture Notes in Computer Science</i> , 2019 , 15-26	0.9	10

281	Credit Assignment Among Neurons in Co-evolving Populations. <i>Lecture Notes in Computer Science</i> , 2004 , 882-891	0.9	10
2 80	Homogeneous and Heterogeneous Island Models for the Set Cover Problem. <i>Lecture Notes in Computer Science</i> , 2012 , 11-20	0.9	10
279	An Evolutionary Hyper-heuristic for the Software Project Scheduling Problem. <i>Lecture Notes in Computer Science</i> , 2016 , 37-47	0.9	10
278	Software Effort Interval Prediction via Bayesian Inference and Synthetic Bootstrap Resampling. <i>ACM Transactions on Software Engineering and Methodology</i> , 2019 , 28, 1-46	3.3	10
277	A Game-Theoretic Approach for Designing Mixed Mutation Strategies. <i>Lecture Notes in Computer Science</i> , 2005 , 279-288	0.9	10
276	Using Negative Correlation to Evolve Fault-Tolerant Circuits. <i>Lecture Notes in Computer Science</i> , 2003 , 35-46	0.9	10
275	Voronoi-based Efficient Surrogate-assisted Evolutionary Algorithm for Very Expensive Problems 2019 ,		9
274	Online QoS Modeling in the Cloud: A Hybrid and Adaptive Multi-learners Approach 2014,		9
273	What are dynamic optimization problems? 2014,		9
272	Evolutionary Dynamic Optimization: Methodologies. <i>Studies in Computational Intelligence</i> , 2013 , 39-64	0.8	9
271	Some Recent Work on Multi-objective Approaches to Search-Based Software Engineering. <i>Lecture Notes in Computer Science</i> , 2013 , 4-15	0.9	9
270	Innovative Batik Design with an Interactive Evolutionary Art System. <i>Journal of Computer Science and Technology</i> , 2009 , 24, 1035-1047	1.7	9
269	Resource-aware configuration in smart camera networks 2012 ,		9
268	Handling Constraints for Search Based Software Test Data Generation 2008,		9
267	A Probabilistic Ensemble Pruning Algorithm 2006 ,		9
266	Current developments and future directions of bio-inspired computation and implications for ecoinformatics. <i>Ecological Informatics</i> , 2006 , 1, 9-22	4.2	9
265	METAHEURISTIC APPROACHES TO TRAFFIC GROOMING IN WDM OPTICAL NETWORKS. International Journal of Computational Intelligence and Applications, 2005, 05, 231-249	1.2	9

(2020-2012)

263	Community Detection Using Cooperative Co-evolutionary Differential Evolution. <i>Lecture Notes in Computer Science</i> , 2012 , 235-244	0.9	9
262	Learning Topological Representation for Networks via Hierarchical Sampling 2019,		9
261	To Adapt or Not to Adapt? 2018 ,		9
260	. IEEE Transactions on Evolutionary Computation, 2021 , 25, 630-650	15.6	9
259	Changing or keeping solutions in dynamic optimization problems with switching costs 2018,		8
258	Variable neighborhood decomposition for Large Scale Capacitated Arc Routing Problem 2014,		8
257	The Role of Degenerate Robustness in the Evolvability of Multi-agent Systems in Dynamic Environments 2010 , 284-293		8
256	The Effectiveness of a New Negative Correlation Learning Algorithm for Classification Ensembles 2010 ,		8
255	EPNet for chaotic time-series prediction. <i>Lecture Notes in Computer Science</i> , 1997 , 146-156	0.9	8
254	A HYBRID ESTIMATION OF DISTRIBUTION ALGORITHM FOR CDMA CELLULAR SYSTEM DESIGN. International Journal of Computational Intelligence and Applications, 2008 , 07, 187-200	1.2	8
253	Evolving Artificial Neural Network Ensembles. Studies in Computational Intelligence, 2008, 851-880	0.8	8
252	NichingEDA: Utilizing the diversity inside a population of EDAs for continuous optimization 2008,		8
251	Time complexity analysis of an evolutionary algorithm for finding nearly maximum cardinality matching. <i>Journal of Computer Science and Technology</i> , 2004 , 19, 450-458	1.7	8
250	Evolutionary Market Agents for Resource Allocation in Decentralised Systems. <i>Lecture Notes in Computer Science</i> , 2008 , 1071-1080	0.9	8
249	Objective reduction for visualising many-objective solution sets. <i>Information Sciences</i> , 2020 , 512, 278-29	4 .7	8
248	Learning and Evolution by Minimization of Mutual Information. <i>Lecture Notes in Computer Science</i> , 2002 , 495-504	0.9	8
247	The time complexity analysis of a class of gene expression programming. Soft Computing, 2015, 19, 161	13.1562!	5 7
246	Kernel truncated regression representation for robust subspace clustering. <i>Information Sciences</i> , 2020 , 524, 59-76	7.7	7

245	Cooperative Co-Evolution-Based Design Optimization: A Concurrent Engineering Perspective. <i>IEEE Transactions on Evolutionary Computation</i> , 2018 , 22, 173-188	15.6	7
244	Computational Intelligence Nonmodel-Based Calibration Approach for Internal Combustion Engines. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 2018 , 140,	1.6	7
243	Defect- and Variation-Tolerant Logic Mapping in Nanocrossbar Using Bipartite Matching and Memetic Algorithm. <i>IEEE Transactions on Very Large Scale Integration (VLSI) Systems</i> , 2016 , 24, 2813-282	2 .6	7
242	Model-based computational intelligence multi-objective optimization for gasoline direct injection engine calibration. <i>Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering</i> , 2019 , 233, 1391-1402	1.4	7
241	Automatic Construction of Parallel Portfolios via Explicit Instance Grouping. <i>Proceedings of the AAAI Conference on Artificial Intelligence</i> , 2019 , 33, 1560-1567	5	7
240	Recent Advances in Evolutionary Algorithms for Job Shop Scheduling. <i>Studies in Computational Intelligence</i> , 2013 , 191-224	0.8	7
239	The Future of Camera Networks 2017 ,		7
238	The potential benefit of relevance vector machine to software effort estimation 2014,		7
237	Evolutionary mechanics: new engineering principles for the emergence of flexibility in a dynamic and uncertain world. <i>Natural Computing</i> , 2012 , 11, 431-448	1.3	7
236	A novel and practicable on-chip adaptive lossless image compression scheme using intrinsic evolvable hardware. <i>Connection Science</i> , 2007 , 19, 281-295	2.8	7
235	A research-led and industry-oriented MSc program in natural computation. <i>IEEE Computational Intelligence Magazine</i> , 2006 , 1, 39-40	5.6	7
234	Solving Japanese Puzzles with Heuristics 2007 ,		7
233	On Test Data Generation of Object-Oriented Software 2007,		7
232	General simulated annealing. Journal of Computer Science and Technology, 1991, 6, 329-338	1.7	7
231	Unpacking and Understanding Evolutionary Algorithms. Lecture Notes in Computer Science, 2012, 60-76	0.9	7
230	A Learning-to-Rank Algorithm for Constructing Defect Prediction Models. <i>Lecture Notes in Computer Science</i> , 2012 , 167-175	0.9	7
229	Domination-Based Ordinal Regression for Expensive Multi-Objective Optimization 2019,		7
228	A review of concurrent optimisation methods. <i>International Journal of Bio-Inspired Computation</i> , 2014 , 6, 22	2.9	6

227	Pipe failure prediction: A data mining method 2013 ,		6
226	Runtime analysis of (1+l) EA on computing unique input output sequences 2007,		6
225	Variable Interaction in Multi-objective Optimization Problems. <i>Lecture Notes in Computer Science</i> , 2016 , 399-409	0.9	6
224	Adjusting Parallel Coordinates for Investigating Multi-objective Search. <i>Lecture Notes in Computer Science</i> , 2017 , 224-235	0.9	6
223	Diversity-Driven Selection of Multiple Crossover Operators for the Capacitated Arc Routing Problem. <i>Lecture Notes in Computer Science</i> , 2014 , 97-108	0.9	6
222	Benchmarking Continuous Dynamic Optimization: Survey and Generalized Test Suite. <i>IEEE Transactions on Cybernetics</i> , 2020 , PP,	10.2	6
221	How to Evaluate Solutions in Pareto-based Search-Based Software Engineering? A Critical Review and Methodological Guidance. <i>IEEE Transactions on Software Engineering</i> , 2020 , 1-1	3.5	6
220	Enhanced Constraint Handling for Reliability-Constrained Multiobjective Testing Resource Allocation. <i>IEEE Transactions on Evolutionary Computation</i> , 2021 , 25, 537-551	15.6	6
219	Robust Optimization in Uncertain Capacitated Arc Routing Problems: Progresses and Perspectives [Review Article]. <i>IEEE Computational Intelligence Magazine</i> , 2021 , 16, 63-82	5.6	6
218	Memetic search for vehicle routing with simultaneous pickup-delivery and time windows. <i>Swarm and Evolutionary Computation</i> , 2021 , 66, 100927	9.8	6
217	Semisupervised Negative Correlation Learning. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2018 , 29, 5366-5379	10.3	5
216	2014,		5
215	Re-scheduling in railway networks 2013 ,		5
214	How Specialised Are Specialists? Generalisation Properties of Entries from the 2008 and 2009 TAC Market Design Competitions. <i>Lecture Notes in Business Information Processing</i> , 2010 , 178-194	0.6	5
213	Applying Elementary Landscape Analysis to Search-Based Software Engineering 2010,		5
212	Using diversity to handle concept drift in on-line learning 2009,		5
211	On the impact of the mutation-selection balance on the runtime of evolutionary algorithms 2009,		5
210	Improving the performance of evolutionary algorithms in grid-based puzzles resolution. <i>Evolutionary Intelligence</i> , 2009 , 2, 169-181	1.7	5

209	Global optimisation by evolutionary algorithms		5
208	On the analysis of average time complexity of estimation of distribution algorithms 2007,		5
207	Evolutionary random neural ensembles based on negative correlation learning 2007,		5
206	Evolving cooperation in the non-iterated prisoner dilemma: A social network inspired approach 2007 ,		5
205	Meta-Heuristic Algorithms for FPGA Segmented Channel Routing Problems with Non-standard Cost Functions. <i>Genetic Programming and Evolvable Machines</i> , 2005 , 6, 359-379	2	5
204	Many-Objective Test Suite Generation for Software Product Lines. <i>ACM Transactions on Software Engineering and Methodology</i> , 2020 , 29, 1-46	3.3	5
203	An Improved Constructive Neural Network Ensemble Approach to Medical Diagnoses. <i>Lecture Notes in Computer Science</i> , 2004 , 572-577	0.9	5
202	Fitness Landscapes and Problem Difficulty in Evolutionary Algorithms: From Theory to Applications. <i>Emergence, Complexity and Computation</i> , 2014 , 133-152	0.1	5
201	Power transformer fault diagnosis considering data imbalance and data set fusion. <i>High Voltage</i> , 2021 , 6, 543-554	4.1	5
200	Generative Adversarial Construction of Parallel Portfolios. IEEE Transactions on Cybernetics, 2020,	10.2	5
199	A novel automated approach for software effort estimation based on data augmentation 2018,		5
198	Evolving SQL Queries for Data Mining. Lecture Notes in Computer Science, 2002, 62-67	0.9	5
197	Empirical Investigations of Reference Point Based Methods When Facing a Massively Large Number of Objectives: First Results. <i>Lecture Notes in Computer Science</i> , 2017 , 390-405	0.9	4
196	Self-aware Computing: Introduction and Motivation. <i>Natural Computing Series</i> , 2016 , 1-5	2.5	4
195	Analysis of noisy evolutionary optimization when sampling fails 2018,		4
194	A grey-box approach to automated mechanism design. <i>Electronic Commerce Research and Applications</i> , 2012 , 11, 24-35	4.6	4
193	Using unreliable data for creating more reliable online learners 2012,		4
192	Immigrant schemes for evolutionary algorithms in dynamic environments: Adapting the replacement rate. <i>Science China Information Sciences</i> , 2011 , 54, 1352-1364	3.4	4

191	On the role of modularity in evolutionary dynamic optimisation 2010,		4
190	Using GP to evolve decision rules for classification in financial data sets 2010 ,		4
189	Improving Scheduling Techniques in Heterogeneous Systems with Dynamic, On-Line Optimisations 2011 ,		4
188	Rigorous time complexity analysis of Univariate Marginal Distribution Algorithm with margins 2009,		4
187	Comparing design of experiments and evolutionary approaches to multi-objective optimisation of sensornet protocols 2009 ,		4
186	Profiling MS proteomics data using smoothed non-linear energy operator and Bayesian additive regression trees. <i>Proteomics</i> , 2009 , 9, 4176-91	4.8	4
185	Theoretical Study of the Relationship between Diversity and Single-Class Measures for Class Imbalance Learning 2009 ,		4
184	Solving optimal control problems with a cost changing control by evolutionary algorithms		4
183	An immigrants scheme based on environmental information for genetic algorithms in changing environments 2008 ,		4
182	Covariance matrix repairing in Gaussian based EDAs 2007,		4
181	Cost-sensitive classification with genetic programming		4
180	Boosting Kernel Models for Regression. IEEE International Conference on Data Mining, 2006,		4
179	Lower bound on number of ADMs in WDM rings with nonuniform traffic demands. <i>Electronics Letters</i> , 2004 , 40, 824	1.1	4
178	Exploiting ensemble diversity for automatic feature extraction		4
177	Digital filter design using multiple Pareto fronts		4
176	Solving cutting stock problems by evolutionary programming. <i>Lecture Notes in Computer Science</i> , 1998 , 755-764	0.9	4
175	Combining landscape approximation and local search in global optimization		4
174	Negatively correlated neural networks for classification. <i>Artificial Life and Robotics</i> , 1999 , 3, 255-259	0.6	4

173	Evolving materialized views in data warehouse		4
172	Quantifying The Generative Capabilities Of Variational Autoencoders For 3D Car Point Clouds 2020 ,		4
171	Towards Novel Meta-heuristic Algorithms for Dynamic Capacitated Arc Routing Problems. <i>Lecture Notes in Computer Science</i> , 2020 , 428-440	0.9	4
170	Dynamic Combinatorial Optimization Problems: A Fitness Landscape Analysis. <i>Studies in Computational Intelligence</i> , 2013 , 79-97	0.8	4
169	Evolutionary Computation for Dynamic Capacitated Arc Routing Problem. <i>Studies in Computational Intelligence</i> , 2013 , 377-401	0.8	4
168	Evolutionary Optimization on Continuous Dynamic Constrained Problems - An Analysis. <i>Studies in Computational Intelligence</i> , 2013 , 193-217	0.8	4
167	The Evolution of Connectionist Networks. Studies in Cognitive Systems, 1994, 233-243		4
166	Synergizing Domain Expertise With Self-Awareness in Software Systems: A Patternized Architecture Guideline. <i>Proceedings of the IEEE</i> , 2020 , 108, 1094-1126	14.3	4
165	Solving Incremental Optimization Problems via Cooperative Coevolution. <i>IEEE Transactions on Evolutionary Computation</i> , 2019 , 23, 762-775	15.6	4
164	Automatic Parameter Tuning using Bayesian Optimization Method 2019,		3
164	Automatic Parameter Tuning using Bayesian Optimization Method 2019 , Self-Aware and Self-Expressive Systems. <i>Computer</i> , 2015 , 48, 18-20	1.6	3
		1.6	
163	Self-Aware and Self-Expressive Systems. <i>Computer</i> , 2015 , 48, 18-20	1.6	3
163 162	Self-Aware and Self-Expressive Systems. <i>Computer</i> , 2015 , 48, 18-20 An evolutionary algorithm for performance optimization at software architecture level 2015 , On Performance Estimation in Automatic Algorithm Configuration. <i>Proceedings of the AAAI</i>		3 3
163 162 161	Self-Aware and Self-Expressive Systems. <i>Computer</i> , 2015 , 48, 18-20 An evolutionary algorithm for performance optimization at software architecture level 2015 , On Performance Estimation in Automatic Algorithm Configuration. <i>Proceedings of the AAAI Conference on Artificial Intelligence</i> , 2020 , 34, 2384-2391 Efficient Cluster-Based Boosting for Semisupervised Classification. <i>IEEE Transactions on Neural</i>	5	3 3
163162161160	Self-Aware and Self-Expressive Systems. <i>Computer</i> , 2015 , 48, 18-20 An evolutionary algorithm for performance optimization at software architecture level 2015 , On Performance Estimation in Automatic Algorithm Configuration. <i>Proceedings of the AAAI Conference on Artificial Intelligence</i> , 2020 , 34, 2384-2391 Efficient Cluster-Based Boosting for Semisupervised Classification. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2018 , 29, 5667-5680	5	3333
163162161160159	Self-Aware and Self-Expressive Systems. <i>Computer</i> , 2015 , 48, 18-20 An evolutionary algorithm for performance optimization at software architecture level 2015 , On Performance Estimation in Automatic Algorithm Configuration. <i>Proceedings of the AAAI Conference on Artificial Intelligence</i> , 2020 , 34, 2384-2391 Efficient Cluster-Based Boosting for Semisupervised Classification. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2018 , 29, 5667-5680 Surrogate-Assisted Expensive Many-Objective Optimization by Model Fusion 2019 , Improvement of Reference Points for Decomposition Based Multi-objective Evolutionary	5 10.3	33333

155	Evolving exact integer algorithms with Genetic Programming 2014 ,		3
¹ 54	Neural networks ensembles for short-term load forecasting 2011,		3
153	Market niching in multi-attribute computational resource allocation systems 2012,		3
152	Analysing crossover operators by search step size		3
151	Application of Fuzzy Similarity to Prediction of Epileptic Seizures Using EEG Signals. <i>Lecture Notes in Computer Science</i> , 2005 , 645-652	0.9	3
150	Evolutionary Multiobjective Ensemble Learning Based on Bayesian Feature Selection		3
149	Continuous selection and self-adaptive evolution strategies		3
148	Evolving neural networks for Hang Seng stock index forecast		3
147	A cooperative ensemble learning system		3
146	A review of population-based metaheuristics for large-scale black-box global optimization: Part A. <i>IEEE Transactions on Evolutionary Computation</i> , 2021 , 1-1	15.6	3
146		15.6 15.6	3
	IEEE Transactions on Evolutionary Computation, 2021, 1-1 A review of population-based metaheuristics for large-scale black-box global optimization: Part B.		
145	A review of population-based metaheuristics for large-scale black-box global optimization: Part B. IEEE Transactions on Evolutionary Computation, 2021, 1-1 An Evolutionary Approach to Modeling Radial Brightness Distributions in Elliptical Galaxies. Lecture	15.6	
145	A review of population-based metaheuristics for large-scale black-box global optimization: Part B. IEEE Transactions on Evolutionary Computation, 2021, 1-1 An Evolutionary Approach to Modeling Radial Brightness Distributions in Elliptical Galaxies. Lecture Notes in Computer Science, 2004, 591-601 A New Multi-objective Evolutionary Optimisation Algorithm: The Two-Archive Algorithm. Lecture	15.6	3
145 144 143	A review of population-based metaheuristics for large-scale black-box global optimization: Part B. IEEE Transactions on Evolutionary Computation, 2021, 1-1 An Evolutionary Approach to Modeling Radial Brightness Distributions in Elliptical Galaxies. Lecture Notes in Computer Science, 2004, 591-601 A New Multi-objective Evolutionary Optimisation Algorithm: The Two-Archive Algorithm. Lecture Notes in Computer Science, 2007, 95-104 A Computational Intelligence Approach to Railway Track Intervention Planning. Studies in	15.6 0.9 0.9	3 3
145 144 143	A review of population-based metaheuristics for large-scale black-box global optimization: Part B. IEEE Transactions on Evolutionary Computation, 2021, 1-1 An Evolutionary Approach to Modeling Radial Brightness Distributions in Elliptical Galaxies. Lecture Notes in Computer Science, 2004, 591-601 A New Multi-objective Evolutionary Optimisation Algorithm: The Two-Archive Algorithm. Lecture Notes in Computer Science, 2007, 95-104 A Computational Intelligence Approach to Railway Track Intervention Planning. Studies in Computational Intelligence, 2008, 163-198 Dynamic Time-Linkage Evolutionary Optimization: Definitions and Potential Solutions. Studies in	15.6 0.9 0.9	3333
145 144 143 142	A review of population-based metaheuristics for large-scale black-box global optimization: Part B. IEEE Transactions on Evolutionary Computation, 2021, 1-1 An Evolutionary Approach to Modeling Radial Brightness Distributions in Elliptical Galaxies. Lecture Notes in Computer Science, 2004, 591-601 A New Multi-objective Evolutionary Optimisation Algorithm: The Two-Archive Algorithm. Lecture Notes in Computer Science, 2007, 95-104 A Computational Intelligence Approach to Railway Track Intervention Planning. Studies in Computational Intelligence, 2008, 163-198 Dynamic Time-Linkage Evolutionary Optimization: Definitions and Potential Solutions. Studies in Computational Intelligence, 2013, 371-395	15.6 0.9 0.9 0.8	33333

137	Speciated Evolutionary Algorithm for Dynamic Constrained Optimisation. <i>Lecture Notes in Computer Science</i> , 2016 , 203-213	0.9	3
136	Hydrodynamic coefficients identification of pitch and heave using multi-objective evolutionary algorithm. <i>Ocean Engineering</i> , 2019 , 171, 33-48	3.9	3
135	Can I Park in the City Center? Predicting Car Park Occupancy Rates in Smart Cities. <i>Journal of Urban Technology</i> , 2020 , 27, 27-41	5.9	3
134	Consensus Learning for Distributed Fuzzy Neural Network in Big Data Environment. <i>IEEE Transactions on Emerging Topics in Computational Intelligence</i> , 2021 , 5, 29-41	4.1	3
133	Symbolic Sequence Classification in the Fractal Space. <i>IEEE Transactions on Emerging Topics in Computational Intelligence</i> , 2021 , 5, 168-177	4.1	3
132	Nanorobots-Assisted Natural Computation for Multifocal Tumor Sensitization and Targeting. <i>IEEE Transactions on Nanobioscience</i> , 2021 , 20, 154-165	3.4	3
131	A hybrid local search framework for the dynamic capacitated arc routing problem 2021,		3
130	Internal combustion engine calibration using optimization algorithms. Applied Energy, 2022, 305, 117894	10.7	3
129	Algorithm portfolio for individual-based surrogate-assisted evolutionary algorithms 2019,		2
128	Lightweight Evolution Strategies for Nanoswimmers-oriented In Vivo Computation 2019,		2
127	Knowledge-based particle swarm optimization for PID controller tuning 2017,		2
126	SaaS for Automated Job Performance Appraisals Using Service Technologies and Big Data Analytics 2017 ,		2
125	Memetic algorithm with adaptive local search for Capacitated Arc Routing Problem 2017,		2
124	Temperature management for heterogeneous multi-core FPGAs using adaptive evolutionary multi-objective approaches 2014 ,		2
123	Challenges and opportunities in dynamic optimisation 2013,		2
122	Incremental development productivity decline 2013,		2
121	The importance of maintaining behavioural link between parents and offspring		2
120	On-line bagging Negative Correlation Learning 2008,		2

119	Automatic feature-queried bird identification system based on entropy and fuzzy similarity. <i>Expert Systems With Applications</i> , 2008 , 34, 2879-2884	7.8	2
118	A GA approach to the optimal placement of sensors in wireless sensor networks with obstacles and pre	ferend	:e <u>s</u>
117	An extended contract net mechanism for dynamic supply chain formation and its application in China petroleum supply chain management. <i>Multiagent and Grid Systems</i> , 2006 , 2, 183-207	0.5	2
116	Parallel evolutionary programming		2
115	Evolving a cooperative population of neural networks by minimizing mutual information		2
114	Evolutionary algorithms with adaptive Levy mutations		2
113	Evolutionary computation comes of age. Cognitive Systems Research, 1999, 1, 59-64	4.8	2
112	Neural networks for breast cancer diagnosis		2
111	Call routing by simulated annealing. <i>International Journal of Electronics</i> , 1995 , 79, 379-387	1.2	2
110	The Evolution of Evolutionary Computation. Lecture Notes in Computer Science, 2003, 19-20	0.9	2
109	Environments Conducive to Evolution of Modularity. <i>Lecture Notes in Computer Science</i> , 2006 , 603-612	0.9	2
108	Towards Intrinsic Evolvable Hardware for Predictive Lossless Image Compression. <i>Lecture Notes in Computer Science</i> , 2006 , 632-639	0.9	2
107	Evolutionary Computation Benchmarking Repository. <i>IEEE Computational Intelligence Magazine</i> , 2006 , 1, 50-53	5.6	2
106	Evolution of Neural Organization in a Hydra-Like Animat. Lecture Notes in Computer Science, 2009, 216-2	22339	2
105	Co-learning Segmentation in Marketplaces. Lecture Notes in Computer Science, 2012, 1-20	0.9	2
104	Fitness Landscape-Based Parameter Tuning Method for Evolutionary Algorithms for Computing Unique Input Output Sequences. <i>Lecture Notes in Computer Science</i> , 2011 , 453-460	0.9	2
103	Can Diversity amongst Learners Improve Online Object Tracking?. <i>Lecture Notes in Computer Science</i> , 2013 , 212-223	0.9	2
102	NGA-Inspired Nanorobots-Assisted Detection of Multifocal Cancer. <i>IEEE Transactions on Cybernetics</i> , 2020 , PP,	10.2	2

101	A multi-modal optimization approach to single path planning for unmanned aerial vehicle 2016,		2
100	. IEEE Transactions on Evolutionary Computation, 2020 , 24, 157-169	15.6	2
99	Analysis of Noisy Evolutionary Optimization When Sampling Fails. <i>Algorithmica</i> , 2021 , 83, 940-975	0.9	2
98	Dynamic Optimization in Fast-Changing Environments via Offline Evolutionary Search. <i>IEEE Transactions on Evolutionary Computation</i> , 2021 , 1-1	15.6	2
97	Genetic Programming with Niching for Uncertain Capacitated Arc Routing Problem. <i>IEEE Transactions on Evolutionary Computation</i> , 2021 , 1-1	15.6	2
96	Hybridisation of Particle Swarm Optimization and Fast Evolutionary Programming. <i>Lecture Notes in Computer Science</i> , 2006 , 392-399	0.9	2
95	Evolutionary Design Calibration. Lecture Notes in Computer Science, 2001, 26-37	0.9	2
94	Touchable computation: Computing-inspired bio-detection 2017,		1
93	Characterizing environmental changes in Robust Optimization Over Time 2012,		1
92	The Effect of Proprioceptive Feedback on the Distribution of Sensory Information in a Model of an Undulatory Organism. <i>Lecture Notes in Computer Science</i> , 2011 , 18-26	0.9	1
91	2009,		1
90	Market-based control of computational systems: introduction to the special issue. <i>Autonomous Agents and Multi-Agent Systems</i> , 2010 , 21, 109-114	2	1
89	Maximum Matching on Boltzmann Machines. Neural Processing Letters, 1998, 7, 49-53	2.4	1
88	A Self-adaptive Evolutionary Programming Based on Optimum Search Direction. <i>Lecture Notes in Computer Science</i> , 2008 , 9-18	0.9	1
87	A multi-objective approach to testing resource allocation in modular software systems 2008,		1
86	Evolutionary computation benchmarking repository [Developmental Tools]. <i>IEEE Computational Intelligence Magazine</i> , 2006 , 1, 50-60	5.6	1
85	Speciation Techniques in Evolved Ensembles with Negative Correlation Learning		1
84	Application of Grid Task Scheduling Algorithm RR to Medium-Grained Evolution Strategies 2007 ,		1

(2009-2007)

83	Evolutionary Ensemble for In Silico Prediction of Ames Test Mutagenicity. <i>Lecture Notes in Computer Science</i> , 2007 , 1162-1171	0.9	1
82	Non-standard cost terminal assignment problems using tabu search approach		1
81	Evolutionary Computation 2003 , 27-53		1
80	Nonlinear Feature Extraction Using Evolutionary Algorithm. <i>Lecture Notes in Computer Science</i> , 2004 , 1014-1019	0.9	1
79	Simulated Evolution and Learning: An Introduction. <i>Applied Intelligence</i> , 2001 , 15, 151-152	4.9	1
78	Getting most out of evolutionary approaches		1
77	Lamarckian evolution in global optimization		1
76	How does evolutionary computation fit into IT postgraduate teaching		1
75	Parallel genetic algorithm on PVM. Wuhan University Journal of Natural Sciences, 1996 , 1, 605-610	0.4	1
74	A note on neural sorting networks with O(1) time complexity. <i>Information Processing Letters</i> , 1995 , 56, 253-254	0.8	1
73	Region-focused Memetic Algorithms with Smart Initialisation for Real-world Large-scale Waste Collection Problems. <i>IEEE Transactions on Evolutionary Computation</i> , 2021 , 1-1	15.6	1
72	A Novel Generalised Meta-Heuristic Framework for Dynamic Capacitated Arc Routing Problems. IEEE Transactions on Evolutionary Computation, 2022, 1-1	15.6	1
71	D-MAENS2: A Self-adaptive D-MAENS Algorithm with Better Decision Diversity 2020 ,		1
70	Adaptive Initialization Method for K-Means Algorithm Frontiers in Artificial Intelligence, 2021, 4, 74081	73	1
69	Simulated annealing and joint manufacturing batch-sizing. <i>Yugoslav Journal of Operations Research</i> , 2003 , 13, 245-259	0.9	1
68	A Hybrid Evolutionary Algorithm for Reliable Facility Location Problem. <i>Lecture Notes in Computer Science</i> , 2020 , 454-467	0.9	1
67	Solving Very Difficult Japanese Puzzles with a Hybrid Evolutionary-Logic Algorithm. <i>Lecture Notes in Computer Science</i> , 2008 , 360-369	0.9	1
66	Adaptive Differential Evolution for Multi-objective Optimization. <i>Communications in Computer and Information Science</i> , 2009 , 9-16	0.3	1

65	Co-evolution of Optimal Agents for the Alternating Offers Bargaining Game. <i>Lecture Notes in Computer Science</i> , 2010 , 61-70	0.9	1
64	Evolutionary Dynamic Optimization: Challenges and Perspectives. <i>Studies in Computational Intelligence</i> , 2013 , 65-84	0.8	1
63	Time Series Prediction by Using Negatively Correlated Neural Networks. <i>Lecture Notes in Computer Science</i> , 1999 , 333-340	0.9	1
62	The Minimum Redundancy IMaximum Relevance Approach to Building Sparse Support Vector Machines. <i>Lecture Notes in Computer Science</i> , 2009 , 184-190	0.9	1
61	Evolving Neural Networks with Maximum AUC for Imbalanced Data Classification. <i>Lecture Notes in Computer Science</i> , 2010 , 335-342	0.9	1
60	Theoretical Advances in Evolutionary Dynamic Optimization. <i>Studies in Computational Intelligence</i> , 2013 , 221-240	0.8	1
59	The Performance Effects of Interaction Frequency in Parallel Cooperative Coevolution. <i>Lecture Notes in Computer Science</i> , 2014 , 82-93	0.9	1
58	Cooperative Coevolution-based Design Space Exploration for Multi-mode Dataflow Mapping. <i>Transactions on Embedded Computing Systems</i> , 2021 , 20, 1-25	1.8	1
57	Memetic algorithm with non-smooth penalty for capacitated arc routing problem. <i>Knowledge-Based Systems</i> , 2021 , 220, 106957	7.3	1
56	Recidivism early warning model based on rough sets and the improved K-prototype clustering algorithm and a back propagation neural network. <i>Journal of Ambient Intelligence and Humanized Computing</i> ,1	3.7	1
55	Exploiting Linear Interpolation of Variational Autoencoders for Satisfying Preferences in Evolutionary Design Optimization 2021 ,		1
54	Improving the performance of evolutionary engine calibration algorithms with principal component analysis 2016 ,		1
53	Learning Time-Series Data of Industrial Design Optimization using Recurrent Neural Networks 2019		1
52	Learning Transferable Variation Operators in a Continuous Genetic Algorithm 2019,		1
51	A New Framework for Analysis of Coevolutionary Systems-Directed Graph Representation and Random Walks. <i>Evolutionary Computation</i> , 2019 , 27, 195-228	4.3	1
50	A Task-Oriented Heuristic for Repairing Infeasible Solutions to Overlapping Coalition Structure Generation. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems,</i> 2020 , 50, 785-801	7.3	1
49	Neural Architecture Search Based on Evolutionary Algorithms with Fitness Approximation 2021,		1
48	Analysis of Evolutionary Algorithms on Fitness Function With Time-Linkage Property. <i>IEEE Transactions on Evolutionary Computation</i> , 2021 , 25, 696-709	15.6	1

Ensemble Learning by Negative Correlation Learning 2012, 177-201 7 47 An Efficient Surrogate Assisted Particle Swarm Optimization for Antenna Synthesis. IEEE 46 4.9 Transactions on Antennas and Propagation, 2022, 1-1 Multiobjective bilevel evolutionary approach for off-grid direction-of-arrival estimation. Applied 45 7.5 O Soft Computing Journal, 2021, 113, 107954 A Selected Introduction to Evolutionary Computation. Studies in Fuzziness and Soft Computing, 2005 44 Multi-objective redundancy hardening with optimal task mapping for independent tasks on 43 3.5 Ο multi-cores. Soft Computing, 2020, 24, 981-995 Discriminative Learning in the Model Space for Symbolic Sequence Classification. IEEE Transactions 42 4.1 on Emerging Topics in Computational Intelligence, 2021, 5, 154-167 Fairer Machine Learning Through Multi-objective Evolutionary Learning. Lecture Notes in Computer 41 0.9 O Science, **2021**, 111-123 Exponential evolution mechanism for in vivo computation. Swarm and Evolutionary Computation, 40 9.8 **2021**, 65, 100931 Early Warning of Incipient Faults for Power Transformer Based on DGA Using a Two-Stage Feature O 39 4.3 Extraction Technique. IEEE Transactions on Power Delivery, 2021, 1-1 Posterior Decision-Making Based on Decomposition-Driven Knee Point Identification. IEEE 38 15.6 Transactions on Evolutionary Computation, 2021, 1-1 Knowledge Transfer Genetic Programming with Auxiliary Population for Solving Uncertain 37 15.6 O Capacitated Arc Routing Problem. IEEE Transactions on Evolutionary Computation, 2022, 1-1 Adaptive Memory-enhanced Time Delay Reservoir and Its Memristive Implementation. IEEE 36 2.5 \circ Transactions on Computers, 2022, 1-1 Adaptive multiobjective evolutionary algorithm for large-scale transformer ratio error estimation. 35 3.4 O Memetic Computing, 2022, 14, 237-251 . IEEE Transactions on Evolutionary Computation, 2016, 1-1 15.6 34 [President's Message]. IEEE Computational Intelligence Magazine, 2014, 9, 3-18 5.6 33 32 President's Greeting [President's Message]. IEEE Computational Intelligence Magazine, 2014, 9, 4-4 5.6 IEEE CIFEr 2014 - Leading Forum on Computational Finance and Economics Research in Academia 5.6 31 and Industry [Conference Reports]. IEEE Computational Intelligence Magazine, 2014, 9, 8-10 50th Anniversary of Fuzzy Logic [President's Message]. IEEE Computational Intelligence Magazine, 5.6 30 2015, 10, 4-4

29	A Growing Story [President's Message]. IEEE Computational Intelligence Magazine, 2015, 10, 3-3	5.6
28	Means to an End Is Not the Same as the End Itself [President's Message]. <i>IEEE Computational Intelligence Magazine</i> , 2015 , 10, 4-4	5.6
27	Big Data Analytics, Data Science and the CIS [President's Message]. <i>IEEE Computational Intelligence Magazine</i> , 2015 , 10, 4-5	5.6
26	[President's Message]. IEEE Computational Intelligence Magazine, 2014, 9, 3-3	5.6
25	Editorial Continued Evolution of Evolutionary Computation - Transition to a New Editor-in-Chief. <i>IEEE Transactions on Evolutionary Computation</i> , 2008 , 12, 661-661	15.6
24	Finding Clusters in Gene Expression Data Using EvoCluster41-66	
23	Computational Neuronal Oscillations using Morlet Wavelet Transform. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society</i> , 2005 , 2005, 2009-12	
22	AUTOMATIC MODULARIZATION WITH SPECIATED NEURAL NETWORK ENSEMBLE. <i>Advances in Natural Computation</i> , 2004 , 268-283	
21	Online algorithm configuration for differential evolution algorithm. Applied Intelligence,1	4.9
20	Grid Task Scheduling Algorithm R3Q for Evolving Artificial Neural Networks 2008 , 717-722	
19	From Evolutionary Computation to Natural Computation 2002 , 41-50	
18	A Hybrid Estimation of Distribution Algorithm for CDMA Cellular System Design. <i>Lecture Notes in Computer Science</i> , 2006 , 905-912	0.9
17	Make Fast Evolutionary Programming Robust by Search Step Control. <i>Lecture Notes in Computer Science</i> , 2006 , 806-815	0.9
16	Implementing Negative Correlation Learning in Evolutionary Ensembles with Suitable Speciation Techniques 2008 , 344-369	
15	Rectified Encoder Network for High-Dimensional Imbalanced Learning. <i>Lecture Notes in Computer Science</i> , 2019 , 684-697	0.9
14	Finding the Largest Successful Coalition under the Strict Goal Preferences of Agents. <i>ACM Transactions on Autonomous and Adaptive Systems</i> , 2020 , 14, 1-33	1.2
13	A Study of Maximum Matching on Boltzmann Machines 1992 , 965-968	
12	Recent New Development in Evolutionary Programming 1999 , 30-56	

LIST OF PUBLICATIONS

11	Surrogate Model Assisted Multi-objective Differential Evolution Algorithm for Performance Optimization at Software Architecture Level*. <i>Lecture Notes in Computer Science</i> , 2017 , 334-346	0.9
10	Profiling of Mass Spectrometry Data for Ovarian Cancer Detection Using Negative Correlation Learning. <i>Lecture Notes in Computer Science</i> , 2009 , 185-194	0.9
9	Emergent Distribution of Computational Workload in the Evolution of an Undulatory Animat. <i>Lecture Notes in Computer Science</i> , 2010 , 587-596	0.9
8	Neural Network Ensembles to Determine Growth Multi-classes in Predictive Microbiology. <i>Lecture Notes in Computer Science</i> , 2012 , 308-318	0.9
7	Selected Aspects of Natural Computing 2012 , 1737-1801	
6	Ubiquity symposium: Evolutionary computation and the processes of life. <i>Ubiquity</i> , 2012 , 2012, 1-8	0.3
5	Feature Creation Towards the Detection of Non-control-Flow Hijacking Attacks. <i>Lecture Notes in Computer Science</i> , 2021 , 153-164	0.9
4	Hierarchical Reduced-space Drift Detection Framework for Multivariate Supervised Data Streams. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2021 , 1-1	4.2
3	Operator-Adapted Evolutionary Large-Scale Multiobjective Optimization for Voltage Transformer Ratio Error Estimation. <i>Lecture Notes in Computer Science</i> , 2021 , 672-683	0.9
2	Reinforcement Learning with Dual-Observation for General Video Game Playing. <i>IEEE Transactions on Games</i> , 2022 , 1-1	1.2
1	The vision of self-evolving computing systems. <i>Journal of Integrated Design and Process Science</i> , 2022 , 1-17	0.4