Peddiahgari Vasu Govardhana Reddy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1838590/publications.pdf

Version: 2024-02-01

Peddiahgari Vasu

#	Article	IF	CITATIONS
1	Synthesis of bis-1,3-(benz)azoles catalyzed by palladium-PEPPSI complex-based catalysts and the study of photophysical properties. Chemosphere, 2022, 301, 134751.	8.2	3
2	A review on multicomponent reactions catalysed by zero-dimensional/one-dimensional titanium dioxide (TiO2) nanomaterials: Promising green methodologies in organic chemistry. Journal of Environmental Management, 2021, 279, 111603.	7.8	28
3	Investigation of Pdâ€PEPPSI catalysts and coupling partners towards direct C2â€arylation/heteroarylation of benzoxazole. Applied Organometallic Chemistry, 2021, 35, e6296.	3.5	7
4	In-vitro evaluation of antioxidant and anticholinesterase activities of novel pyridine, quinoxaline and s-triazine derivatives. Environmental Research, 2021, 199, 111320.	7.5	28
5	Sterically enriched bulky 1,3-bis(<i>N</i> , <i>N</i> ′-aralkyl)benzimidazolium based Pd-PEPPSI complexes for Buchwald–Hartwig amination reactions. New Journal of Chemistry, 2020, 44, 11694-11703.	2.8	16
6	Benzimidazole bearing Pd–PEPPSI complexes catalyzed direct C2â€arylation/heteroarylation of <i>N</i> â€substituted benzimidazoles. Applied Organometallic Chemistry, 2020, 34, e5869.	3.5	14
7	Cu–Nâ€heterocyclic carbeneâ€catalysed synthesis of 2â€arylâ€3â€(arylethynyl)quinoxalines from oneâ€pot ta coupling of <i>o</i> â€phenylenediamines and terminal alkynes. Applied Organometallic Chemistry, 2019, 33, e5188.	andem 3.5	11
8	Pd-NHC catalyzed Suzuki–Miyaura couplings on 3-bromo-9 <i>H</i> -pyrido[2,3- <i>b</i>]indole-6-sulfonamide. Synthetic Communications, 2019, 49, 1987-1996.	2.1	13
9	Green synthesis of 1,2,3â€triazoles <i>via</i> Cu ₂ 0 NPs on hydrogen trititanate nanotubes promoted 1,3â€dipolar cycloadditions. Applied Organometallic Chemistry, 2019, 33, e4752.	3.5	16
10	Cu(OTf) ₂ loaded protonated trititanate nanotubes catalyzed reaction: a facile method for the synthesis of furo[2,3- <i>b</i>]quinoxalines. New Journal of Chemistry, 2018, 42, 5972-5977.	2.8	11
11	βâ€Cyclodextrin in Water: As an Efficient Green Protocol for the Synthesis of Pyrimido[4, 5â€ <i>b</i>]quinolineâ€diones. ChemistrySelect, 2018, 3, 4283-4288.	1.5	13
12	Highly efficient Pdâ€PEPPSIâ€IPr catalyst for <i>N</i> â€(4â€pyridazinyl)â€bridged bicyclic sulfonamides via Suzuki–Miyaura coupling reaction. Applied Organometallic Chemistry, 2018, 32, e4068.	3.5	6
13	SingaCycle TM â€A1â€Catalyzed Successive Suzukiâ€Miyaura and Buchwald Couplings for the Synthesis of Various New Pyridine Analogues. ChemistrySelect, 2018, 3, 13182-13190.	1.5	7
14	Enantioselective Vanadium-Catalyzed Oxidative Coupling: Development and Mechanistic Insights. Journal of Organic Chemistry, 2018, 83, 14362-14384.	3.2	42
15	Mild and Efficient Synthesis of 5â€(2,2â€difluoroâ€1â€phenyl) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 18 Ultrasonic Irradiation Conditions. ChemistrySelect, 2017, 2, 356-363.	7 Td (cyclo 1.5	opropyl)‫i> 5
16	Cul Supported on Protonated Trititanate Nanotubes: A Reusable Catalyst for the Oneâ€Pot Synthesis of Propargylamines via A ³ â€Coupling. Asian Journal of Organic Chemistry, 2017, 6, 712-719.	2.7	26
17	Asymmetric Oxidative Coupling of Phenols and Hydroxycarbazoles. Organic Letters, 2017, 19, 5505-5508.	4.6	62
18	PEPPSI-SONO-SP ² : a new highly efficient ligand-free catalyst system for the synthesis of tri-substituted triazine derivatives via Suzuki–Miyaura and Sonogashira coupling reactions under a green approach. New Journal of Chemistry, 2016, 40, 5135-5142.	2.8	19

Peddiahgari Vasu

#	Article	IF	CITATIONS
19	A BrÃ,nsted Acid–Primary Amine as a Synergistic Catalyst for Stereoselective Asymmetric Diels–Alder Reactions. European Journal of Organic Chemistry, 2016, 2016, 5220-5226.	2.4	17
20	Novel 7â€Nitroâ€1â€(Piperidinâ€4â€yl)â€4,5â€Dihydroâ€[1,2,4] Triazolo[4,3â€a]Quinolineâ€Sulphonamide Deri Antimicrobial Agents: Design, Synthesis, and Bioâ€Activity. Journal of Heterocyclic Chemistry, 2016, 53, 1416-1423.	vatives as 2.6	1
21	Rapid synthesis of alkylaminophenols via the Petasis borono–Mannich reaction using protonated trititanate nanotubes as robust solid–acid catalysts. RSC Advances, 2016, 6, 14682-14691.	3.6	31
22	Camphor-derived thioureas: Synthesis and application in asymmetric Kabachnik-Fields reaction. Chinese Chemical Letters, 2016, 27, 943-947.	9.0	12
23	Protonated trititanate nanotubes: an efficient catalyst for one-pot three-component coupling of benzothiazole amines, heterocyclic aldehydes, and dialkyl/diaryl phosphites with a greener perspective. Tetrahedron Letters, 2016, 57, 696-702.	1.4	17
24	Synthesis of New 4,5-Dihydro-1-methyl-[1,2,4]triazolo[4,3- <i>a</i>]quinolin-7-amine–Derived Ureas and Their Anticancer Activity. Synthetic Communications, 2015, 45, 831-837.	2.1	6
25	Synthesis of N-(3-picolyl)-based 1,3,2λ5-benzoxazaphosphinamides as potential 11β-HSD1 enzyme inhibitors. Medicinal Chemistry Research, 2015, 24, 1119-1135.	2.4	16
26	Chitosan: highly efficient, green, and reusable biopolymer catalyst for the synthesis of alkylaminophenols via Petasis borono–Mannich reaction. Tetrahedron Letters, 2015, 56, 4984-4989.	1.4	27
27	Propylphosphonic anhydride (T3P®) catalyzed one-pot synthesis of α-aminonitriles. Chinese Chemical Letters, 2015, 26, 739-743.	9.0	5
28	Efficient solvent free synthesis of tertiary α-aminophosphonates using H ₂ Ti ₃ O ₇ nanotubes as a reusable solid-acid catalyst. New Journal of Chemistry, 2015, 39, 9605-9610.	2.8	21
29	Phosphomolybdic acid promoted Kabachnik–Fields reaction: an efficient one-pot synthesis of α-aminophosphonates from 2-cyclopropylpyrimidine-4-carbaldehyde. Tetrahedron Letters, 2014, 55, 3336-3339.	1.4	26
30	Synthesis of New 2,4-Diaryl-6-methyl-5-nitropyrimidines as Antibacterial and Antioxidant Agents. Journal of Heterocyclic Chemistry, 2013, 50, 1395-1399.	2.6	7
31	New enantiopure NHCs derived from camphor. Chemical Communications, 2009, , 5910.	4.1	31
32	Hindered BrÃ,nsted bases as Lewis base catalysts. Organic and Biomolecular Chemistry, 2009, 7, 4009.	2.8	25
33	Recent Advances in the Synthesis and Application of Chiral Ionic Liquids. Synthesis, 2008, 2008, 999-1016.	2.3	18
34	Synthesis of 2′-paclitaxel methyl 2-glucopyranosyl succinate for specific targeted delivery to cancer cells. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 617-620.	2.2	47