Peddiahgari Vasu Govardhana Reddy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1838590/publications.pdf

Version: 2024-02-01

34 papers

634 citations

16 h-index 610901 24 g-index

37 all docs

37 docs citations

times ranked

37

727 citing authors

#	Article	IF	Citations
1	Asymmetric Oxidative Coupling of Phenols and Hydroxycarbazoles. Organic Letters, 2017, 19, 5505-5508.	4.6	62
2	Synthesis of $2\hat{a}\in^2$ -paclitaxel methyl 2-glucopyranosyl succinate for specific targeted delivery to cancer cells. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 617-620.	2.2	47
3	Enantioselective Vanadium-Catalyzed Oxidative Coupling: Development and Mechanistic Insights. Journal of Organic Chemistry, 2018, 83, 14362-14384.	3.2	42
4	New enantiopure NHCs derived from camphor. Chemical Communications, 2009, , 5910.	4.1	31
5	Rapid synthesis of alkylaminophenols via the Petasis borono–Mannich reaction using protonated trititanate nanotubes as robust solid–acid catalysts. RSC Advances, 2016, 6, 14682-14691.	3.6	31
6	A review on multicomponent reactions catalysed by zero-dimensional/one-dimensional titanium dioxide (TiO2) nanomaterials: Promising green methodologies in organic chemistry. Journal of Environmental Management, 2021, 279, 111603.	7.8	28
7	In-vitro evaluation of antioxidant and anticholinesterase activities of novel pyridine, quinoxaline and s-triazine derivatives. Environmental Research, 2021, 199, 111320.	7.5	28
8	Chitosan: highly efficient, green, and reusable biopolymer catalyst for the synthesis of alkylaminophenols via Petasis borono–Mannich reaction. Tetrahedron Letters, 2015, 56, 4984-4989.	1.4	27
9	Phosphomolybdic acid promoted Kabachnik–Fields reaction: an efficient one-pot synthesis of α-aminophosphonates from 2-cyclopropylpyrimidine-4-carbaldehyde. Tetrahedron Letters, 2014, 55, 3336-3339.	1.4	26
10	Cul Supported on Protonated Trititanate Nanotubes: A Reusable Catalyst for the Oneâ€Pot Synthesis of Propargylamines via A ^{â€Coupling. Asian Journal of Organic Chemistry, 2017, 6, 712-719.}	2.7	26
11	Hindered Brønsted bases as Lewis base catalysts. Organic and Biomolecular Chemistry, 2009, 7, 4009.	2.8	25
12	Efficient solvent free synthesis of tertiary $\hat{l}\pm$ -aminophosphonates using H ₂ Ti ₃ O ₇ nanotubes as a reusable solid-acid catalyst. New Journal of Chemistry, 2015, 39, 9605-9610.	2.8	21
13	PEPPSI-SONO-SP ² : a new highly efficient ligand-free catalyst system for the synthesis of tri-substituted triazine derivatives via Suzuki–Miyaura and Sonogashira coupling reactions under a green approach. New Journal of Chemistry, 2016, 40, 5135-5142.	2.8	19
14	Recent Advances in the Synthesis and Application of Chiral Ionic Liquids. Synthesis, 2008, 2008, 999-1016.	2.3	18
15	A Brønsted Acid–Primary Amine as a Synergistic Catalyst for Stereoselective Asymmetric Diels–Alder Reactions. European Journal of Organic Chemistry, 2016, 2016, 5220-5226.	2.4	17
16	Protonated trititanate nanotubes: an efficient catalyst for one-pot three-component coupling of benzothiazole amines, heterocyclic aldehydes, and dialkyl/diaryl phosphites with a greener perspective. Tetrahedron Letters, 2016, 57, 696-702.	1.4	17
17	Synthesis of N-(3-picolyl)-based 1,3,2î»5-benzoxazaphosphinamides as potential 11î²-HSD1 enzyme inhibitors. Medicinal Chemistry Research, 2015, 24, 1119-1135.	2.4	16
18	Green synthesis of 1,2,3â€triazoles <i>via</i> Cu ₂ 0 NPs on hydrogen trititanate nanotubes promoted 1,3â€dipolar cycloadditions. Applied Organometallic Chemistry, 2019, 33, e4752.	3.5	16

#	Article	IF	CITATIONS
19	Sterically enriched bulky 1,3-bis(⟨i⟩N⟨ i⟩,⟨i⟩N⟨ i⟩′-aralkyl)benzimidazolium based Pd-PEPPSI complexes for Buchwald–Hartwig amination reactions. New Journal of Chemistry, 2020, 44, 11694-11703.	2.8	16
20	Benzimidazole bearing Pd–PEPPSI complexes catalyzed direct C2â€arylation/heteroarylation of <i>N</i> â€substituted benzimidazoles. Applied Organometallic Chemistry, 2020, 34, e5869.	3.5	14
21	βâ€Cyclodextrin in Water: As an Efficient Green Protocol for the Synthesis of Pyrimido[4, 5â€ <i>b</i>]quinolineâ€diones. ChemistrySelect, 2018, 3, 4283-4288.	1.5	13
22	Pd-NHC catalyzed Suzuki–Miyaura couplings on 3-bromo-9 <i>H</i> -pyrido[2,3- <i>b</i>]indole-6-sulfonamide. Synthetic Communications, 2019, 49, 1987-1996.	2.1	13
23	Camphor-derived thioureas: Synthesis and application in asymmetric Kabachnik-Fields reaction. Chinese Chemical Letters, 2016, 27, 943-947.	9.0	12
24	Cu(OTf) ₂ loaded protonated trititanate nanotubes catalyzed reaction: a facile method for the synthesis of furo[2,3- <i>b</i>)quinoxalines. New Journal of Chemistry, 2018, 42, 5972-5977.	2.8	11
25	Cu–Nâ€heterocyclic carbeneâ€catalysed synthesis of 2â€arylâ€3â€(arylethynyl)quinoxalines from oneâ€pot coupling of <i>o</i> à€phenylenediamines and terminal alkynes. Applied Organometallic Chemistry, 2019, 33, e5188.	andem 3.5	11
26	Synthesis of New 2,4-Diaryl-6-methyl-5-nitropyrimidines as Antibacterial and Antioxidant Agents. Journal of Heterocyclic Chemistry, 2013, 50, 1395-1399.	2.6	7
27	SingaCycle TM â€A1â€Catalyzed Successive Suzukiâ€Miyaura and Buchwald Couplings for the Synthesis of Various New Pyridine Analogues. ChemistrySelect, 2018, 3, 13182-13190.	1.5	7
28	Investigation of Pdâ€PEPPSI catalysts and coupling partners towards direct C2â€arylation/heteroarylation of benzoxazole. Applied Organometallic Chemistry, 2021, 35, e6296.	3.5	7
29	Synthesis of New 4,5-Dihydro-1-methyl-[1,2,4]triazolo[4,3- <i>>a< i>)quinolin-7-amine–Derived Ureas and Their Anticancer Activity. Synthetic Communications, 2015, 45, 831-837.</i>	2.1	6
30	Highly efficient Pdâ€PEPPSIâ€IPr catalyst for <i>N</i> â€(4â€pyridazinyl)â€bridged bicyclic sulfonamides via Suzuki–Miyaura coupling reaction. Applied Organometallic Chemistry, 2018, 32, e4068.	3.5	6
31	Propylphosphonic anhydride (T3P \hat{A}^{\otimes}) catalyzed one-pot synthesis of \hat{I}_{\pm} -aminonitriles. Chinese Chemical Letters, 2015, 26, 739-743.	9.0	5
32	Mild and Efficient Synthesis of 5â€(2,2â€difluoroâ€1â€phenyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 227 Td (cy Ultrasonic Irradiation Conditions. ChemistrySelect, 2017, 2, 356-363.	clopropyl) 1.5	â€∢i>Nâ€ 5
33	Synthesis of bis-1,3-(benz)azoles catalyzed by palladium-PEPPSI complex-based catalysts and the study of photophysical properties. Chemosphere, 2022, 301, 134751.	8.2	3
34	Novel 7â€Nitroâ€1â€(Piperidinâ€4â€yl)â€4,5â€Dihydroâ€[1,2,4] Triazolo[4,3â€a]Quinolineâ€6ulphonamide D Antimicrobial Agents: Design, Synthesis, and Bioâ€Activity. Journal of Heterocyclic Chemistry, 2016, 53, 1416-1423.	erivatives a 2.6	as 1