
Christopher A Eide

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1838010/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	AP24534, a Pan-BCR-ABL Inhibitor for Chronic Myeloid Leukemia, Potently Inhibits the T315I Mutant and Overcomes Mutation-Based Resistance. Cancer Cell, 2009, 16, 401-412.	7.7	1,050
2	Functional genomic landscape of acute myeloid leukaemia. Nature, 2018, 562, 526-531.	13.7	907
3	Bcr-Abl kinase domain mutations, drug resistance, and the road to a cure for chronic myeloid leukemia. Blood, 2007, 110, 2242-2249.	0.6	590
4	Oncogenic <i>CSF3R</i> Mutations in Chronic Neutrophilic Leukemia and Atypical CML. New England Journal of Medicine, 2013, 368, 1781-1790.	13.9	499
5	Comparison of imatinib mesylate, dasatinib (BMS-354825), and nilotinib (AMN107) in an N-ethyl-N-nitrosourea (ENU)–based mutagenesis screen: high efficacy of drug combinations. Blood, 2006, 108, 2332-2338.	0.6	368
6	Activating alleles of JAK3 in acute megakaryoblastic leukemia. Cancer Cell, 2006, 10, 65-75.	7.7	295
7	BCR-ABL1 Compound Mutations Combining Key Kinase Domain Positions Confer Clinical Resistance to Ponatinib in Ph Chromosome-Positive Leukemia. Cancer Cell, 2014, 26, 428-442.	7.7	292
8	Response and Resistance to BCR-ABL1-Targeted Therapies. Cancer Cell, 2020, 37, 530-542.	7.7	246
9	BCR-ABL1 compound mutations in tyrosine kinase inhibitor–resistant CML: frequency and clonal relationships. Blood, 2013, 121, 489-498.	0.6	187
10	Identification of Interleukin-1 by Functional Screening as a Key Mediator of Cellular Expansion and Disease Progression in Acute Myeloid Leukemia. Cell Reports, 2017, 18, 3204-3218.	2.9	187
11	Wnt/Ca2+/NFAT Signaling Maintains Survival of Ph+ Leukemia Cells upon Inhibition of Bcr-Abl. Cancer Cell, 2010, 18, 74-87.	7.7	164
12	A Novel Crizotinib-Resistant Solvent-Front Mutation Responsive to Cabozantinib Therapy in a Patient with <i>ROS1</i> -Rearranged Lung Cancer. Clinical Cancer Research, 2016, 22, 2351-2358.	3.2	141
13	Targeting BCR-ABL1 in Chronic Myeloid Leukemia by PROTAC-Mediated Targeted Protein Degradation. Cancer Research, 2019, 79, 4744-4753.	0.4	139
14	Combining the Allosteric Inhibitor Asciminib with Ponatinib Suppresses Emergence of and Restores Efficacy against Highly Resistant BCR-ABL1 Mutants. Cancer Cell, 2019, 36, 431-443.e5.	7.7	137
15	Targeting the BCR-ABL Signaling Pathway in Therapy-Resistant Philadelphia Chromosome-Positive Leukemia. Clinical Cancer Research, 2011, 17, 212-221.	3.2	127
16	High-throughput sequencing screen reveals novel, transforming RAS mutations in myeloid leukemia patients. Blood, 2009, 113, 1749-1755.	0.6	119
17	Clinical resistance to crenolanib in acute myeloid leukemia due to diverse molecular mechanisms. Nature Communications, 2019, 10, 244.	5.8	111
18	Antagonism of SET Using OP449 Enhances the Efficacy of Tyrosine Kinase Inhibitors and Overcomes Drug Resistance in Myeloid Leukemia, Clinical Cancer Research, 2014, 20, 2092-2103	3.2	108

CHRISTOPHER A EIDE

#	Article	IF	CITATIONS
19	Nilotinib and MEK Inhibitors Induce Synthetic Lethality through Paradoxical Activation of RAF in Drug-Resistant Chronic Myeloid Leukemia. Cancer Cell, 2011, 20, 715-727.	7.7	107
20	Foretinib is a potent inhibitor of oncogenic ROS1 fusion proteins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19519-19524.	3.3	106
21	A therapeutically targetable mechanism of BCR-ABL–independent imatinib resistance in chronic myeloid leukemia. Science Translational Medicine, 2014, 6, 252ra121.	5.8	105
22	Laying the foundation for genomically-based risk assessment in chronic myeloid leukemia. Leukemia, 2019, 33, 1835-1850.	3.3	97
23	Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5381-90.	3.3	93
24	The ABL Switch Control Inhibitor DCC-2036 Is Active against the Chronic Myeloid Leukemia Mutant BCR-ABLT315I and Exhibits a Narrow Resistance Profile. Cancer Research, 2011, 71, 3189-3195.	0.4	91
25	Molecularly targeted drug combinations demonstrate selective effectiveness for myeloid- and lymphoid-derived hematologic malignancies. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7554-E7563.	3.3	86
26	SGX393 inhibits the CML mutant Bcr-Abl ^{T315I} and preempts <i>in vitro</i> resistance when combined with nilotinib or dasatinib. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5507-5512.	3.3	84
27	High-throughput sequence analysis of the tyrosine kinome in acute myeloid leukemia. Blood, 2008, 111, 4788-4796.	0.6	84
28	Targeting BCL-2 and ABL/LYN in Philadelphia chromosome–positive acute lymphoblastic leukemia. Science Translational Medicine, 2016, 8, 354ra114.	5.8	65
29	New Bcr-Abl inhibitors in chronic myeloid leukemia: keeping resistance in check. Expert Opinion on Investigational Drugs, 2008, 17, 865-878.	1.9	58
30	Genomic landscape of neutrophilic leukemias of ambiguous diagnosis. Blood, 2019, 134, 867-879.	0.6	55
31	Acute dasatinib exposure commits Bcr-Abl–dependent cells to apoptosis. Blood, 2009, 114, 3459-3463.	0.6	54
32	CRISPR-Cas9–mediated saturated mutagenesis screen predicts clinical drug resistance with improved accuracy. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11751-11756.	3.3	50
33	Cytokine-Mediated Inflammatory Pathways Promote Clonal Evolution and Disease Progression in Acute Myeloid Leukemia. Blood, 2016, 128, 1688-1688.	0.6	41
34	The Colony-Stimulating Factor 3 Receptor T640N Mutation Is Oncogenic, Sensitive to JAK Inhibition, and Mimics T618I. Clinical Cancer Research, 2016, 22, 757-764.	3.2	40
35	Chronic Myeloid Leukemia: Advances in Understanding Disease Biology and Mechanisms of Resistance to Tyrosine Kinase Inhibitors. Current Hematologic Malignancy Reports, 2015, 10, 158-166.	1.2	39
36	The BCR-ABL35INS insertion/truncation mutant is kinase-inactive and does not contribute to tyrosine kinase inhibitor resistance in chronic myeloid leukemia. Blood, 2011, 118, 5250-5254.	0.6	37

Christopher A Eide

#	Article	IF	CITATIONS
37	Targeting of colony-stimulating factor 1 receptor (CSF1R) in the CLL microenvironment yields antineoplastic activity in primary patient samples. Oncotarget, 2018, 9, 24576-24589.	0.8	36
38	An activating KRAS mutation in imatinib-resistant chronic myeloid leukemia. Leukemia, 2008, 22, 2269-2272.	3.3	32
39	Src and STAT3 inhibitors synergize to promote tumor inhibition in renal cell carcinoma. Oncotarget, 2015, 6, 44675-44687.	0.8	27
40	Persistent LYN Signaling in Imatinib-Resistant, BCR-ABL–Independent Chronic Myelogenous Leukemia. Journal of the National Cancer Institute, 2008, 100, 908-909.	3.0	26
41	Threshold Levels of ABL Tyrosine Kinase Inhibitors Retained in Chronic Myeloid Leukemia Cells Determine Their Commitment to Apoptosis. Cancer Research, 2013, 73, 3356-3370.	0.4	26
42	NT157 has antineoplastic effects and inhibits IRS1/2 and STAT3/5 in JAK2V617F-positive myeloproliferative neoplasm cells. Signal Transduction and Targeted Therapy, 2020, 5, 5.	7.1	26
43	GATA-2 functions downstream of BMPs and CaM KIV in ectodermal cells during primitive hematopoiesis. Developmental Biology, 2007, 310, 454-469.	0.9	23
44	Bcr-Abl Kinase Domain Mutations and the Unsettled Problem of Bcr-AblT315I: Looking into the Future of Controlling Drug Resistance in Chronic Myeloid Leukemia. Clinical Lymphoma and Myeloma, 2007, 7, S120-S130.	1.4	22
45	KIT Signaling Governs Differential Sensitivity of Mature and Primitive CML Progenitors to Tyrosine Kinase Inhibitors. Cancer Research, 2013, 73, 5775-5786.	0.4	22
46	BCR-ABL1 promotes leukemia by converting p27 into a cytoplasmic oncoprotein. Blood, 2014, 124, 3260-3273.	0.6	20
47	Therapeutically Targetable ALK Mutations in Leukemia. Cancer Research, 2015, 75, 2146-2150.	0.4	20
48	Proteasome 26S subunit, non-ATPases 1 (PSMD1) and 3 (PSMD3), play an oncogenic role in chronic myeloid leukemia by stabilizing nuclear factor-kappa B. Oncogene, 2021, 40, 2697-2710.	2.6	20
49	IRS2 silencing increases apoptosis and potentiates the effects of ruxolitinib in JAK2V617F-positive myeloproliferative neoplasms. Oncotarget, 2016, 7, 6948-6959.	0.8	20
50	A genome-wide CRISPR screen identifies regulators of MAPK and MTOR pathways that mediate resistance to sorafenib in acute myeloid leukemia. Haematologica, 2022, 107, 77-85.	1.7	20
51	Simultaneous kinase inhibition with ibrutinib and BCL2 inhibition with venetoclax offers a therapeutic strategy for acute myeloid leukemia. Leukemia, 2020, 34, 2342-2353.	3.3	18
52	Biomarkers Predicting Venetoclax Sensitivity and Strategies for Venetoclax Combination Treatment. Blood, 2018, 132, 175-175.	0.6	18
53	Differentiation of leukemic blasts is not completely blocked in acute myeloid leukemia. Proceedings of the United States of America, 2019, 116, 24593-24599.	3.3	17
54	Dual inhibition of JAK1/2 kinases and BCL2: a promising therapeutic strategy for acute myeloid leukemia. Leukemia, 2018, 32, 2025-2028.	3.3	16

CHRISTOPHER A EIDE

#	Article	IF	CITATIONS
55	Synthetic lethality of TNK2 inhibition in PTPN11-mutant leukemia. Science Signaling, 2018, 11, .	1.6	16
56	ERBB2/HER2 mutations are transforming and therapeutically targetable in leukemia. Leukemia, 2020, 34, 2798-2804.	3.3	16
57	High-throughput mutational screen of the tyrosine kinome in chronic myelomonocytic leukemia. Leukemia, 2009, 23, 406-409.	3.3	15
58	Metformin exerts multitarget antileukemia activity in JAK2V617F-positive myeloproliferative neoplasms. Cell Death and Disease, 2018, 9, 311.	2.7	14
59	Differentiation status of primary chronic myeloid leukemia cells affects sensitivity to BCR-ABL1 inhibitors. Oncotarget, 2017, 8, 22606-22615.	0.8	13
60	The function of the pleckstrin homology domain in BCR–ABL-mediated leukemogenesis. Leukemia, 2010, 24, 226-229.	3.3	12
61	Understanding cancer from the stem cells up. Nature Medicine, 2017, 23, 656-657.	15.2	11
62	Integrating in vitro sensitivity and dose-response slope is predictive of clinical response to ABL kinase inhibitors in chronic myeloid leukemia. Blood, 2013, 122, 3331-3334.	0.6	10
63	Growth Arrest of BCR-ABL Positive Cells with a Sequence-Specific Polyamide-Chlorambucil Conjugate. PLoS ONE, 2008, 3, e3593.	1.1	9
64	HitWalker: variant prioritization for personalized functional cancer genomics. Bioinformatics, 2013, 29, 509-510.	1.8	9
65	Extreme mutational selectivity of axitinib limits its potential use as a targeted therapeutic for BCR-ABL1-positive leukemia. Leukemia, 2016, 30, 1418-1421.	3.3	9
66	A novel <i>AGGF1-PDGFRb</i> fusion in pediatric T-cell acute lymphoblastic leukemia. Haematologica, 2018, 103, e87-e91.	1.7	8
67	NT157, an IGF1R-IRS1/2 inhibitor, exhibits antineoplastic effects in pre-clinical models of chronic myeloid leukemia. Investigational New Drugs, 2021, 39, 736-746.	1.2	7
68	Aurora A kinase as a target for therapy in <i>TCF3-HLF</i> rearranged acute lymphoblastic leukemia. Haematologica, 2021, 106, 2990-2994.	1.7	6
69	Lentiviral-Driven Discovery of Cancer Drug Resistance Mutations. Cancer Research, 2021, 81, 4685-4695.	0.4	6
70	Associating drug sensitivity with differentiation status identifies effective combinations for acute myeloid leukemia. Blood Advances, 2022, 6, 3062-3067.	2.5	6
71	New Strategies for the First-Line Treatment of Chronic Myeloid Leukemia: Can Resistance Be Avoided?. Clinical Lymphoma and Myeloma, 2008, 8, S107-S117.	1.4	5
72	Clonal hematopoiesis as determined by the HUMARA assay is a marker for acquired mutations in epigenetic regulators in older women. Experimental Hematology, 2016, 44, 857-865.e5.	0.2	5

Christopher A Eide

#	Article	IF	CITATIONS
73	Novel Combination Therapy of Venetoclax and Ruxolitinib in the Treatment of Patients with Relapsed/Refractory Acute Myeloid Leukemia. Blood, 2021, 138, 2333-2333.	0.6	5
74	Inhibition of T315I Bcr-Abl and Other Imatinib-Resistant Bcr-Abl Mutants by the Selective Abl Kinase Inhibitor SGX70393 Blood, 2006, 108, 1373-1373.	0.6	3
75	Functional validation of the oncogenic cooperativity and targeting potential of tuberous sclerosis mutation in medulloblastoma using a MYCâ€amplified model cell line. Pediatric Blood and Cancer, 2017, 64, e26553.	0.8	2
76	Combining the Allosteric ABL1 Tyrosine Kinase Inhibitor ABL001 with ATP-Competitive Inhibitors to Suppress Resistance in Chronic Myeloid Leukemia. Blood, 2016, 128, 2747-2747.	0.6	2
77	Characterizing Population Heterogeneity and Signaling Changes in Chronic Myeloid Leukemia Stem and Progenitor Cells upon Combined Treatment with Imatinib and MEK Inhibitors Using Quantitative Single Cell Phospho-Imaging. Blood, 2018, 132, 4248-4248.	0.6	2
78	Kinase Inhibitor Therapy in CML: It's What's Inside That Counts. Oncotarget, 2013, 4, 1332-1333.	0.8	1
79	A New Generation of Drugs in Cancer Treatment: Molecularly Targeted Therapies. , 0, , 193-221.		0
80	Identification of Tyrosine Kinase Mutations by Large-Scale DNA Sequencing in Patients with Chronic Myelomonocytic Leukemia/Atypical Chronic Myeloid Leukemia Blood, 2006, 108, 3606-3606.	0.6	0
81	High-Throughput Validation of Mutations Identified in Primary Leukemia Cells. Blood, 2016, 128, 4725-4725.	0.6	0
82	Combining p38MAPK Inhibitors with a Second Targeted Agent Enhances Blockade of Inflammatory Signaling-Mediated Survival in Acute Myeloid Leukemia Cells. Blood, 2018, 132, 2726-2726.	0.6	0
83	Mathematical and Experimental Evidence That Differentiation of Leukemic Blasts in Acute Myeloid Leukemia Is Not Completely Blocked. Blood, 2019, 134, 1435-1435.	0.6	0
84	A Role for Lipid Metabolism in Tyrosine Kinase Inhibitor (TKI) Resistance of Chronic Myeloid Leukemia (CML). Blood, 2021, 138, 2542-2542.	0.6	0
85	Patterns of Venetoclax Sensitivity in Chronic Lymphocytic Leukemia. Blood, 2020, 136, 12-14.	0.6	0