List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1837966/publications.pdf Version: 2024-02-01

		66343	54911
121	7,760	42	84
papers	citations	h-index	g-index
133	133	133	6477
all docs	docs citations	times ranked	citing authors

WENLUL

#	Article	IF	CITATIONS
1	Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Natural Product Reports, 2013, 30, 108-160.	10.3	1,692
2	Minimum Information about a Biosynthetic Gene cluster. Nature Chemical Biology, 2015, 11, 625-631.	8.0	715
3	A genomics-guided approach for discovering and expressing cryptic metabolic pathways. Nature Biotechnology, 2003, 21, 187-190.	17.5	292
4	Biosynthesis of the Enediyne Antitumor Antibiotic C-1027. Science, 2002, 297, 1170-1173.	12.6	278
5	Radical-Mediated Enzymatic Methylation: A Tale of Two SAMS. Accounts of Chemical Research, 2012, 45, 555-564.	15.6	207
6	Thiopeptide Biosynthesis Featuring Ribosomally Synthesized Precursor Peptides and Conserved Posttranslational Modifications. Chemistry and Biology, 2009, 16, 141-147.	6.0	195
7	Nosiheptide Biosynthesis Featuring a Unique Indole Side Ring Formation on the Characteristic Thiopeptide Framework. ACS Chemical Biology, 2009, 4, 855-864.	3.4	166
8	Genetic Characterization of the Chlorothricin Gene Cluster as a Model for Spirotetronate Antibiotic Biosynthesis. Chemistry and Biology, 2006, 13, 575-585.	6.0	150
9	Characterization of the Maduropeptin Biosynthetic Gene Cluster from <i>Actinomadura madurae</i> ATCC 39144 Supporting a Unifying Paradigm for Enediyne Biosynthesis. Journal of the American Chemical Society, 2007, 129, 13082-13094.	13.7	134
10	The Neocarzinostatin Biosynthetic Gene Cluster from Streptomyces carzinostaticus ATCC 15944 Involving Two Iterative Type I Polyketide Synthases. Chemistry and Biology, 2005, 12, 293-302.	6.0	125
11	Radical-mediated enzymatic carbon chain fragmentation-recombination. Nature Chemical Biology, 2011, 7, 154-160.	8.0	124
12	An enzymatic [4+2] cyclization cascade creates the pentacyclic core of pyrroindomycins. Nature Chemical Biology, 2015, 11, 259-265.	8.0	122
13	Metabolic coupling of two small-molecule thiols programs the biosynthesis of lincomycin A. Nature, 2015, 518, 115-119.	27.8	113
14	A Novel 4-Methylideneimidazole-5-one-Containing Tyrosine Aminomutase in Enediyne Antitumor Antibiotic C-1027 Biosynthesis. Journal of the American Chemical Society, 2003, 125, 6062-6063.	13.7	111
15	Characterization of the Saframycin A Gene Cluster from <i>Streptomyces lavendulae</i> NRRL 11002 Revealing a Nonribosomal Peptide Synthetase System for Assembling the Unusual Tetrapeptidyl Skeleton in an Iterative Manner. Journal of Bacteriology, 2008, 190, 251-263.	2.2	97
16	Characterization of the Azinomycin B Biosynthetic Gene Cluster Revealing a Different Iterative Type I Polyketide Synthase for Naphthoate Biosynthesis. Chemistry and Biology, 2008, 15, 693-705.	6.0	96
17	Rapid PCR amplification of minimal enediyne polyketide synthase cassettes leads to a predictive familial classification model. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11959-11963.	7.1	88
18	Cloning and Characterization of the Tetrocarcin A Gene Cluster from <i>Micromonospora chalcea</i> NRRL 11289 Reveals a Highly Conserved Strategy for Tetronate Biosynthesis in Spirotetronate Antibiotics. Journal of Bacteriology, 2008, 190, 6014-6025.	2.2	87

#	Article	IF	CITATIONS
19	A phosphopantetheinylating polyketide synthase producing a linear polyene to initiate enediyne antitumor antibiotic biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1460-1465.	7.1	87
20	Genes for Production of the Enediyne Antitumor Antibiotic C-1027 in Streptomyces globisporus Are Clustered with the cagA Gene That Encodes the C-1027 Apoprotein. Antimicrobial Agents and Chemotherapy, 2000, 44, 382-392.	3.2	86
21	Biosynthesis of thiopeptide antibiotics and their pathway engineering. Natural Product Reports, 2013, 30, 218-226.	10.3	79
22	Genetic Modulation of the Overexpression of Tailoring Genes <i>eryK</i> and <i>eryG</i> Leading to the Improvement of Erythromycin A Purity and Production in <i>Saccharopolyspora erythraea</i> Fermentation. Applied and Environmental Microbiology, 2008, 74, 1820-1828.	3.1	77
23	Enediyne Natural Products: Biosynthesis and Prospect Towards Engineering Novel Antitumor Agents. Current Medicinal Chemistry, 2003, 10, 2317-2325.	2.4	76
24	A linear nonribosomal octapeptide from Fusarium graminearum facilitates cell-to-cell invasion of wheat. Nature Communications, 2019, 10, 922.	12.8	74
25	Multiplexing of Combinatorial Chemistry in Antimycin Biosynthesis: Expansion of Molecular Diversity and Utility. Angewandte Chemie - International Edition, 2013, 52, 12308-12312.	13.8	72
26	A vitamin-C-derived DNA modification catalysed by an algal TET homologue. Nature, 2019, 569, 581-585.	27.8	72
27	Moving posttranslational modifications forward to biosynthesize the glycosylated thiopeptide nocathiacin I in Nocardia sp. ATCC202099. Molecular BioSystems, 2010, 6, 1180.	2.9	70
28	Enzyme-Dependent [4Â+ 2] Cycloaddition Depends on Lid-like Interaction of the N-Terminal Sequence with the Catalytic Core in PyrI4. Cell Chemical Biology, 2016, 23, 352-360.	5.2	61
29	Insights into Pyrroindomycin Biosynthesis Reveal a Uniform Paradigm for Tetramate/Tetronate Formation. Journal of the American Chemical Society, 2012, 134, 17342-17345.	13.7	60
30	NosA Catalyzing Carboxyl-Terminal Amide Formation in Nosiheptide Maturation via an Enamine Dealkylation on the Serine-Extended Precursor Peptide. Journal of the American Chemical Society, 2010, 132, 16324-16326.	13.7	58
31	Thiopeptide Antibiotics Exhibit a Dual Mode of Action against Intracellular Pathogens by Affecting Both Host and Microbe. Chemistry and Biology, 2015, 22, 1002-1007.	6.0	55
32	Single Chemical Modifications of the C-1027 Enediyne Core, a Radiomimetic Antitumor Drug, Affect Both Drug Potency and the Role of Ataxia-Telangiectasia Mutated in Cellular Responses to DNA Double-Strand Breaks. Cancer Research, 2007, 67, 773-781.	0.9	54
33	Spiroketal Formation and Modification in Avermectin Biosynthesis Involves a Dual Activity of AveC. Journal of the American Chemical Society, 2013, 135, 1540-1548.	13.7	53
34	Identification and Analysis of the Biosynthetic Gene Cluster Encoding the Thiopeptide Antibiotic Cyclothiazomycin in Streptomyces hygroscopicus 10-22. Applied and Environmental Microbiology, 2010, 76, 2335-2344.	3.1	52
35	ThioFinder: A Web-Based Tool for the Identification of Thiopeptide Gene Clusters in DNA Sequences. PLoS ONE, 2012, 7, e45878.	2.5	51
36	Cloning and characterization of a bacterial iterative type I polyketide synthase gene encoding the 6-methylsalicyclic acid synthase. Biochemical and Biophysical Research Communications, 2006, 345, 133-139.	2.1	50

#	Article	IF	CITATIONS
37	Biosynthesis of the β-Amino Acid Moiety of the Enediyne Antitumor Antibiotic C-1027 Featuring β-Amino Acyl-S-carrier Protein Intermediates. Journal of the American Chemical Society, 2005, 127, 11594-11595.	13.7	49
38	Cloning, sequencing and characterization of the biosynthetic gene cluster of sanglifehrin A, a potent cyclophilin inhibitor. Molecular BioSystems, 2011, 7, 852-861.	2.9	49
39	Insights into Quinaldic Acid Moiety Formation in Thiostrepton Biosynthesis Facilitating Fluorinated Thiopeptide Generation. Chemistry and Biology, 2012, 19, 443-448.	6.0	48
40	Reprogramming of the antimycin NRPS-PKS assembly lines inspired by gene evolution. Nature Communications, 2018, 9, 3534.	12.8	47
41	Thiostrepton Maturation Involving a Deesterificationâ^'Amidation Way To Process the C-Terminally Methylated Peptide Backbone. Journal of the American Chemical Society, 2011, 133, 2852-2855.	13.7	45
42	Enediyne Biosynthesis and Self-Resistance: A Progress Report. Bioorganic Chemistry, 1999, 27, 172-188.	4.1	43
43	Uncovering the Formation and Selection of Benzylmalonyl-CoA from the Biosynthesis of Splenocin and Enterocin Reveals a Versatile Way to Introduce Amino Acids into Polyketide Carbon Scaffolds. Journal of the American Chemical Society, 2015, 137, 4183-4190.	13.7	43
44	Post-translational modifications involved in the biosynthesis of thiopeptide antibiotics. Organic and Biomolecular Chemistry, 2017, 15, 3376-3390.	2.8	43
45	Opportunities and challenges from current investigations into the biosynthetic logic of nosiheptide-represented thiopeptide antibiotics. Current Opinion in Chemical Biology, 2013, 17, 626-634.	6.1	42
46	Quartromicin Biosynthesis: Two Alternative Polyketide Chains Produced by One Polyketide Synthase Assembly Line. Chemistry and Biology, 2012, 19, 1313-1323.	6.0	41
47	Insights into Bacterial 6-Methylsalicylic Acid Synthase and Its Engineering to Orsellinic Acid Synthase for Spirotetronate Generation. Chemistry and Biology, 2010, 17, 495-503.	6.0	40
48	Toward Improvement of Erythromycin A Production in an IndustrialSaccharopolyspora erythraea Strain via Facilitation of Genetic Manipulation with an Artificial <i>attB</i> Site for Specific Recombination. Applied and Environmental Microbiology, 2011, 77, 7508-7516.	3.1	39
49	Processing 2-Methyl- <scp>l</scp> -Tryptophan through Tandem Transamination and Selective Oxygenation Initiates Indole Ring Expansion in the Biosynthesis of Thiostrepton. Journal of the American Chemical Society, 2017, 139, 12105-12108.	13.7	36
50	Caerulomycins and Collismycins Share a Common Paradigm for 2,2′-Bipyridine Biosynthesis via an Unusual Hybrid Polyketide–Peptide Assembly Logic. Journal of the American Chemical Society, 2012, 134, 9038-9041.	13.7	35
51	Differences in PLP-Dependent Cysteinyl Processing Lead to Diverse <i>S</i> -Functionalization of Lincosamide Antibiotics. Journal of the American Chemical Society, 2016, 138, 6348-6351.	13.7	35
52	Characterization of NocL Involved in Thiopeptide Nocathiacin I Biosynthesis. Journal of Biological Chemistry, 2011, 286, 21287-21294.	3.4	34
53	Operon for Biosynthesis of Lipstatin, the Beta-Lactone Inhibitor of Human Pancreatic Lipase. Applied and Environmental Microbiology, 2014, 80, 7473-7483.	3.1	34
54	Target-oriented design and biosynthesis of thiostrepton-derived thiopeptide antibiotics with improved pharmaceutical properties. Organic Chemistry Frontiers, 2015, 2, 106-109.	4.5	32

#	Article	IF	CITATIONS
55	An α/β-hydrolase fold protein in the biosynthesis of thiostrepton exhibits a dual activity for endopeptidyl hydrolysis and epoxide ring opening/macrocyclization. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14318-14323.	7.1	32
56	Precursor-Directed Mutational Biosynthesis Facilitates the Functional Assignment of Two Cytochromes P450 in Thiostrepton Biosynthesis. ACS Chemical Biology, 2016, 11, 2673-2678.	3.4	31
57	Chemo-enzymatic synthesis of equisetin. Chemical Communications, 2017, 53, 4695-4697.	4.1	30
58	Biochemical Characterization of the SgcA1 α-d-Glucopyranosyl-1-phosphate Thymidylyltransferase from the Enediyne Antitumor Antibiotic C-1027 Biosynthetic Pathway and Overexpression ofsgcA1inStreptomycesglobisporusto Improve C-1027 Production⊥,#. Journal of Natural Products, 2004, 67, 206-213.	3.0	29
59	Coordinative Modulation of Chlorothricin Biosynthesis by Binding of the Glycosylated Intermediates and End Product to a Responsive Regulator ChIF1. Journal of Biological Chemistry, 2016, 291, 5406-5417.	3.4	29
60	Structural Insights into a Flavin-Dependent [4Â+ 2] Cyclase that Catalyzes trans-Decalin Formation in Pyrroindomycin Biosynthesis. Cell Chemical Biology, 2018, 25, 718-727.e3.	5.2	29
61	Dissection of Two Acylâ€Transfer Reactions Centered on Acylâ€Sâ€Carrier Protein Intermediates for Incorporating 5â€Chloroâ€6â€methylâ€ <i>O</i> â€methylsalicyclic Acid into Chlorothricin. ChemBioChem, 2009, 10, 813-819.	2.6	27
62	Transcriptome Mining of Active Biosynthetic Pathways and Their Associated Products in <i>Streptomyces flaveolus</i> . Angewandte Chemie - International Edition, 2011, 50, 9651-9654.	13.8	27
63	Insight into bicyclic thiopeptide biosynthesis benefited from development of a uniform approach for molecular engineering and production improvement. Chemical Science, 2014, 5, 240-246.	7.4	27
64	Recent advances in understanding the enzymatic reactions of [4+2] cycloaddition and spiroketalization. Current Opinion in Chemical Biology, 2016, 31, 95-102.	6.1	27
65	4-alkyl-L-(Dehydro)proline biosynthesis in actinobacteria involves N-terminal nucleophile-hydrolase activity of Î ³ -glutamyltranspeptidase homolog for C-C bond cleavage. Nature Communications, 2017, 8, 16109.	12.8	27
66	Complex Biotransformations Catalyzed by Radical S-Adenosylmethionine Enzymes. Journal of Biological Chemistry, 2011, 286, 30245-30252.	3.4	26
67	Rational Control of Polyketide Extender Units by Structureâ€Based Engineering of a Crotonyl oA Carboxylase/Reductase in Antimycin Biosynthesis. Angewandte Chemie - International Edition, 2015, 54, 13462-13465.	13.8	26
68	Thiolation Protein-Based Transfer of Indolyl to a Ribosomally Synthesized Polythiazolyl Peptide Intermediate during the Biosynthesis of the Side-Ring System of Nosiheptide. Journal of the American Chemical Society, 2017, 139, 18186-18189.	13.7	26
69	Biosynthesis of Lincosamide Antibiotics: Reactions Associated with Degradation and Detoxification Pathways Play a Constructive Role. Accounts of Chemical Research, 2018, 51, 1496-1506.	15.6	25
70	Cyclization of polyketides and non-ribosomal peptides on and off their assembly lines. Natural Product Reports, 2016, 33, 162-173.	10.3	24
71	Biosynthesis of 3-methoxy-5-methyl naphthoic acid and its incorporation into the antitumor antibiotic azinomycin B. Molecular BioSystems, 2010, 6, 1071.	2.9	23
72	The versatile lowâ€molecularâ€weight thiols: Beyond cell protection. BioEssays, 2015, 37, 1262-1267.	2.5	23

#	Article	IF	CITATIONS
73	Bio-inspired engineering of thiopeptide antibiotics advances the expansion of molecular diversity and utility. Current Opinion in Biotechnology, 2017, 48, 210-219.	6.6	23
74	Biosynthesis and molecular engineering of templated natural products. National Science Review, 2017, 4, 553-575.	9.5	23
75	Discovery and efficient synthesis of a biologically active alkaloid inspired by thiostrepton biosynthesis. Tetrahedron, 2014, 70, 7686-7690.	1.9	20
76	Insights into the thioamidation of thiopeptins to enhance the understanding of the biosynthetic logic of thioamide-containing thiopeptides. Organic and Biomolecular Chemistry, 2019, 17, 3727-3731.	2.8	20
77	A KAS-III Heterodimer in Lipstatin Biosynthesis Nondecarboxylatively Condenses C ₈ and C ₁₄ Fatty Acyl-CoA Substrates by a Variable Mechanism during the Establishment of a C ₂₂ Aliphatic Skeleton. Journal of the American Chemical Society, 2019, 141, 3993-4001.	13.7	20
78	Formation of an aminovinyl-cysteine residue in thioviridamides occurs through a path independent of known lanthionine synthetase activity. Cell Chemical Biology, 2021, 28, 675-685.e5.	5.2	20
79	Concurrent modifications of the C-terminus and side ring of thiostrepton and their synergistic effects with respect to improving antibacterial activities. Organic Chemistry Frontiers, 2016, 3, 496-500.	4.5	19
80	Computational Investigation of the Mechanism of Diels–Alderase PyrI4. Journal of the American Chemical Society, 2020, 142, 20232-20239.	13.7	18
81	A Heterotrimeric Dehydrogenase Complex Functions with 2 Distinct YcaO Proteins to Install 5 Azole Heterocycles into 35-Membered Sulfomycin Thiopeptides. Journal of the American Chemical Society, 2020, 142, 8454-8463.	13.7	18
82	Aromatic Polyketides Produced by Bacterial Iterative Type I Polyketide Synthases. ACS Catalysis, 2013, 3, 1439-1447.	11.2	17
83	Discovery of New Thioviridamideâ€Like Compounds with Antitumor Activities. Chinese Journal of Chemistry, 2019, 37, 1015-1020.	4.9	17
84	Black soldier fly larvae effectively degrade lincomycin from pharmaceutical industry wastes. Journal of Environmental Management, 2022, 307, 114539.	7.8	17
85	Radical <i>S</i> -Adenosylmethionine Protein NosN Forms the Side Ring System of Nosiheptide by Functionalizing the Polythiazolyl Peptide <i>S</i> -Conjugated Indolic Moiety. Organic Letters, 2019, 21, 1502-1505.	4.6	16
86	NosP-Regulated Nosiheptide Production Responds to Both Peptidyl and Small-Molecule Ligands Derived from the Precursor Peptide. Cell Chemical Biology, 2018, 25, 143-153.e4.	5.2	15
87	Optimal design of thiostrepton-derived thiopeptide antibiotics and their potential application against oral pathogens. Organic Chemistry Frontiers, 2019, 6, 1194-1199.	4.5	15
88	lsolation and structure determination of two new nosiheptide-type compounds provide insights into the function of the cytochrome P450 oxygenase NocV in nocathiacin biosynthesis. Organic Chemistry Frontiers, 2020, 7, 584-589.	4.5	15
89	Thiostrepton Reactivates Latent HIV-1 through the p-TEFb and NF-κB Pathways Mediated by Heat Shock Response. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	14
90	Molecular engineering of thiostrepton via single "base―based mutagenesis to generate side ring-derived variants. Organic Chemistry Frontiers, 2016, 3, 1254-1258.	4.5	13

#	Article	IF	CITATIONS
91	Discovery of caerulomycin/collismycin-type 2,2′-bipyridine natural products in the genomic era. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 459-468.	3.0	13
92	Structure-based Mechanistic Insights into Terminal Amide Synthase in Nosiheptide-Represented Thiopeptides Biosynthesis. Scientific Reports, 2015, 5, 12744.	3.3	12
93	Caerulomycin and collismycin antibiotics share a trans-acting flavoprotein-dependent assembly line for 2,2'-bipyridine formation. Nature Communications, 2021, 12, 3124.	12.8	12
94	Enzymatic competition and cooperation branch the caerulomycin biosynthetic pathway toward different 2,2′-bipyridine members. Organic and Biomolecular Chemistry, 2017, 15, 5472-5475.	2.8	11
95	A linear hydroxymethyl tetramate undergoes an acetylation–elimination process for exocyclic methylene formation in the biosynthetic pathway of pyrroindomycins. Organic and Biomolecular Chemistry, 2017, 15, 88-91.	2.8	11
96	Isolation, Structure Elucidation, and Biosynthesis of a Cysteate-Containing Nonribosomal Peptide in <i>Streptomyces lincolnensis</i> . Journal of Organic Chemistry, 2018, 83, 7102-7108.	3.2	11
97	Insights into the Functionalization of the Methylsalicyclic Moiety during the Biosynthesis of Chlorothricin by Comparative Kinetic Assays of the Activities of Two KAS Illâ€like Acyltransferases. Chinese Journal of Chemistry, 2019, 37, 821-826.	4.9	11
98	Biosynthesis of a New Fusaoctaxin Virulence Factor in <i>Fusarium graminearum</i> Relies on a Distinct Path To Form a Guanidinoacetyl Starter Unit Priming Nonribosomal Octapeptidyl Assembly. Journal of the American Chemical Society, 2021, 143, 19719-19730.	13.7	11
99	Polyketide Biosynthesis beyond the Type I, II, and III Polyketide Synthase Paradigms: A Progress Report. ACS Symposium Series, 2007, , 154-166.	0.5	10
100	Co-expression of a SARP Family Activator ChIF2 and a Type II Thioesterase ChIK Led to High Production of Chlorothricin in Streptomyces antibioticus DSM 40725. Frontiers in Bioengineering and Biotechnology, 2020, 8, 1013.	4.1	10
101	Oxidative Indole Dearomatization for Asymmetric Furoindoline Synthesis by a Flavinâ€Dependent Monooxygenase Involved in the Biosynthesis of Bicyclic Thiopeptide Thiostrepton. Angewandte Chemie - International Edition, 2021, 60, 8401-8405.	13.8	9
102	Crystallographic analysis of NosA, which catalyzes terminal amide formation in the biosynthesis of nosiheptide. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 1033-1037.	0.8	8
103	Characterization of the metallo-dependent amidohydrolases responsible for "auxiliary―leucinyl removal in the biosynthesis of 2,2′-bipyridine antibiotics. Synthetic and Systems Biotechnology, 2017, 2, 137-146.	3.7	7
104	Biosynthesis of the Central Piperidine Nitrogen Heterocycle in Series <i>a</i> Thiopeptides. Chinese Journal of Chemistry, 2019, 37, 35-41.	4.9	7
105	Dissection of the Enzymatic Process for Forming a Central Imidazopiperidine Heterocycle in the Biosynthesis of a Series c Thiopeptide Antibiotic. Journal of the American Chemical Society, 2021, 143, 13790-13797.	13.7	7
106	Mechanism of the Stereoselective Catalysis of Diels–Alderase PyrE3 Involved in Pyrroindomycin Biosynthesis. Journal of the American Chemical Society, 2022, 144, 5099-5107.	13.7	7
107	Characterization of Histidine Functionalization and Its Timing in the Biosynthesis of Ribosomally Synthesized and Posttranslationally Modified Thioamitides. Journal of the American Chemical Society, 2022, 144, 4431-4438.	13.7	7
108	In vivo investigation of the role of SfmO2 in saframycin A biosynthesis by structural characterization of the analogue saframycin O. Science China Chemistry, 2012, 55, 90-97.	8.2	6

#	Article	IF	CITATIONS
109	Biosynthesis-based artificial evolution of microbial natural products. Science China Chemistry, 2016, 59, 1175-1187.	8.2	6
110	Characterization of a carboxyl methyltransferase in <i>Fusarium graminearum</i> provides insights into the biosynthesis of fusarin A. Organic and Biomolecular Chemistry, 2021, 19, 6638-6643.	2.8	6
111	Ansafurantrienins, Unprecedented Ansatrienin Derivatives Formed via Photocatalytic Intramolecular [3 + 2] Oxidative Cycloaddition. Organic Letters, 2022, 24, 592-596.	4.6	6
112	Unsymmetrically Regioselective Homodimerization Depends on the Subcellular Colocalization of Laccase/Fasciclin Protein in the Biosynthesis of Phlegmacins. ACS Chemical Biology, 2022, 17, 791-796.	3.4	6
113	Mutational biosynthesis to generate novel analogs of nosiheptide featuring a fluorinated indolic acid moiety. Organic and Biomolecular Chemistry, 2020, 18, 4051-4055.	2.8	5
114	ReplyÂto â€~C–C bond cleavage in biosynthesis of 4-alkyl-l-proline precursors of lincomycin and anthramycin cannot precede C-methylation'. Nature Communications, 2018, 9, 3168.	12.8	4
115	Crystallization and preliminary X-ray diffraction analysis of AntE, a crotonyl-CoA carboxylase/reductase from <i>Streptomyces</i> sp. NRRL 2288. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 734-737.	0.8	3
116	Functional Characterization and Crystal Structure of the Type II Peptidyl Carrier Protein ColA1a in Collismycins Biosynthesis â€. Chinese Journal of Chemistry, 2020, 38, 963-969.	4.9	3
117	NocU is a cytochrome P450 oxygenase catalyzing N-hydroxylation of the indolic moiety during the maturation of the thiopeptide antibiotics nocathiacins. Organic and Biomolecular Chemistry, 2021, 19, 8338-8342.	2.8	3
118	Establishment of fingerprint of Gegen Qinlian decoction and its formula compatibility groups using UHPLC–MS/MS and its study to spectrum–effect relationship. Journal of Liquid Chromatography and Related Technologies, 2018, 41, 384-390.	1.0	2
119	Investigation of 2,2′-Bipyridine Biosynthesis Reveals a Common Two-Component System for Aldehydes Production by Carboxylate Reduction. Organic Letters, 2022, 24, 897-902.	4.6	2
120	Enzyme-Associated Pericyclic Reactions. , 2020, , 187-227.		1
121	Oxidative Indole Dearomatization for Asymmetric Furoindoline Synthesis by a Flavinâ€Dependent Monooxygenase Involved in the Biosynthesis of Bicyclic Thiopeptide Thiostrepton. Angewandte Chemie, 2021, 133, 8482-8486.	2.0	0