List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1837645/publications.pdf Version: 2024-02-01

Δτιν Δρηικαρι

#	Article	IF	CITATIONS
1	The mycobiomes and bacteriomes of sputum, saliva, and home dust. Indoor Air, 2021, 31, 357-368.	4.3	3
2	Increased prevalence of indoor <i>Aspergillus</i> and <i>Penicillium</i> species is associated with indoor flooding and coastal proximity: a case study of 28 moldy buildings. Environmental Sciences: Processes and Impacts, 2021, 23, 1681-1687.	3.5	6
3	Assessing Hotel Employee Knowledge on Risk Factors and Risk Management Procedures for Microbial Contamination of Hotel Water Distribution Systems. International Journal of Environmental Research and Public Health, 2021, 18, 3539.	2.6	1
4	Lag Effects of Ozone, PM2.5, and Meteorological Factors on COVID-19 New Cases at the Disease Epicenter in Queens, New York. Atmosphere, 2021, 12, 357.	2.3	6
5	Variations of radon and airborne particulate matter near three large phosphogypsum stacks in Florida. Environmental Monitoring and Assessment, 2021, 193, 284.	2.7	3
6	Exposure to traffic-related air pollution and bacterial diversity in the lower respiratory tract of children. PLoS ONE, 2021, 16, e0244341.	2.5	9
7	Evaluation of a Filtering Facepiece Respirator and a Pleated Particulate Respirator in Filtering Ultrafine Particles and Submicron Particles in Welding and Asphalt Plant Work Environments. International Journal of Environmental Research and Public Health, 2021, 18, 6437.	2.6	2
8	Pet ownership and risk of dying from cancer: observation from a nationally representative cohort. International Journal of Environmental Health Research, 2020, 30, 105-116.	2.7	4
9	Association between pet ownership and the risk of dying from colorectal cancer: an 18-year follow-up of a national cohort. Zeitschrift Fur Gesundheitswissenschaften, 2020, 28, 555-562.	1.6	2
10	Short-Term Effects of Ambient Ozone, PM2.5, and Meteorological Factors on COVID-19 Confirmed Cases and Deaths in Queens, New York. International Journal of Environmental Research and Public Health, 2020, 17, 4047.	2.6	154
11	Issue of Compliance with Use of Personal Protective Equipment among Wastewater Workers across the Southeast Region of the United States. International Journal of Environmental Research and Public Health, 2019, 16, 2009.	2.6	18
12	Pet ownership and the risk of dying from lung cancer, findings from an 18 year follow-up of a US national cohort. Environmental Research, 2019, 173, 379-386.	7.5	7
13	Voc and particle concentrations in new and old model automobiles. International Journal of Transport Development and Integration, 2019, 3, 179-184.	0.9	1
14	Field Evaluation of N95 Filtering Facepiece Respirators on Construction Jobsites for Protection against Airborne Ultrafine Particles. International Journal of Environmental Research and Public Health, 2018, 15, 1958.	2.6	9
15	The Impact of PM 2.5 on Lung and Bronchial Cancers: Regression and Time Series Analysis in the U.S. from 1999 to 2014. , 2018, , .		1
16	Dose-dependent immunomodulating effects of endotoxin in allergic airway inflammation. Innate Immunity, 2017, 23, 249-257.	2.4	24
17	Aerosolized bacteria and microbial activity in dental clinics during cleaning procedures. Journal of Aerosol Science, 2017, 114, 209-218.	3.8	16
18	Disinfection of Microbial Aerosols. Advances in Environmental Microbiology, 2017, , 55-71.	0.3	3

#	Article	IF	CITATIONS
19	Predictors and respiratory depositions of airborne endotoxin in homes using biomass fuels and LPG gas for cooking. Journal of Exposure Science and Environmental Epidemiology, 2017, 27, 112-117.	3.9	15
20	English language YouTube videos as a source of lead poisoning-related information: a cross-sectional study. International Journal of Occupational and Environmental Health, 2017, 23, 222-227.	1.2	4
21	EFFECT OF DIFFERENT AIR FLOW RATES ON THE COLLECTION OF ATMOSPHERIC MOLD SPORES OF DIFFERENT SIZES BY A SLIT IMPACTOR. , 2017, , .		1
22	Public health implications of social media use during natural disasters, environmental disasters, and other environmental concerns. Natural Hazards, 2016, 83, 729-760.	3.4	68
23	Culturability of Bacillus spores on aerosol collection filters exposed to airborne combustion products of Al, Mg, and B·Ti. Environmental Research, 2016, 147, 212-217.	7.5	5
24	Exposure to Microorganisms and Aeroallergens among Greenhouse Workers Worldwide and Associated Respiratory Diseases. MOJ Public Health, 2016, 4, .	0.1	1
25	Key determinants of the fungal and bacterial microbiomes in homes. Environmental Research, 2015, 138, 130-135.	7.5	101
26	Glyphosate-rich air samples induce IL-33, TSLP and generate IL-13 dependent airway inflammation. Toxicology, 2014, 325, 42-51.	4.2	49
27	Dustborne and airborne Gram-positive and Gram-negative bacteria in high versus low ERMI homes. Science of the Total Environment, 2014, 482-483, 92-99.	8.0	31
28	Airborne fungal cell fragments in homes in relation to total fungal biomass. Indoor Air, 2013, 23, 142-147.	4.3	24
29	<i>Stenotrophomonas, Mycobacterium,</i> and <i>Streptomyces</i> in home dust and air: associations with moldiness and other home/family characteristics. Indoor Air, 2013, 23, 387-396.	4.3	25
30	Contribution of Fungal Spores to Organic Carbon Aerosol in Indoor and Outdoor Environments in the Greater Cincinnati Area. Aerosol and Air Quality Research, 2013, 13, 1348-1355.	2.1	4
31	Inactivation of Aerosolized <i>Bacillus atrophaeus</i> (BG) Endospores and MS2 Viruses by Combustion of Reactive Materials. Environmental Science & Technology, 2012, 46, 7334-7341.	10.0	42
32	Fungal Cell Fraction Exposure in Homes. Chest, 2012, 142, 747A.	0.8	0
33	Comparison of Workplace Protection Factors for Different Biological Contaminants. Journal of Occupational and Environmental Hygiene, 2011, 8, 417-425.	1.0	14
34	Influence of home characteristics on airborne and dustborne endotoxin and β-d-glucan. Journal of Environmental Monitoring, 2011, 13, 3246.	2.1	25
35	Association Between Increased DNA Mutational Frequency and Thermal Inactivation of Aerosolized <i>Bacillus</i> Spores Exposed to Dry Heat. Aerosol Science and Technology, 2011, 45, 376-381.	3.1	17
36	Airborne Endotoxin and ß-D-glucan in PM1 in Agricultural and Home Environments. Aerosol and Air Quality Research, 2011, 11, 376-386.	2.1	27

#	Article	IF	CITATIONS
37	Method for Studying Survival of Airborne Viable Microorganisms in Combustion Environments: Development and Evaluation. Aerosol and Air Quality Research, 2010, 10, 414-424.	2.1	32
38	Exposure matrices of endotoxin, (1→3)-β-d-glucan, fungi, and dust mite allergens in flood-affected homes of New Orleans. Science of the Total Environment, 2010, 408, 5489-5498.	8.0	34
39	Visually observed mold and moldy odor versus quantitatively measured microbial exposure in homes. Science of the Total Environment, 2010, 408, 5565-5574.	8.0	72
40	Airborne Microorganisms, Endotoxin, and (1→3)-β-‹sc>D‹/sc>-Glucan Exposure in Greenhouses and Assessment of Respiratory Symptoms Among Workers. Annals of Occupational Hygiene, 2010, 55, 272-85.	1.9	33
41	Inactivation of Aerosolized Viruses in Continuous Air Flow with Axial Heating. Aerosol Science and Technology, 2010, 44, 1042-1048.	3.1	19
42	Thermal inactivation of airborne viable Bacillus subtilis spores by short-term exposure in axially heated air flow. Journal of Aerosol Science, 2010, 41, 352-363.	3.8	40
43	Electrospray versus Nebulization for Aerosolization and Filter Testing with Bacteriophage Particles. Aerosol Science and Technology, 2009, 43, 298-304.	3.1	42
44	Temporal and spatial variation of indoor and outdoor airborne fungal spores, pollen, and (1→3)-β-d-glucan. Aerobiologia, 2009, 25, 147-158.	1.7	40
45	Aerosolization of fungi, (1→3)-β-d glucan, and endotoxin from flood-affected materials collected in New Orleans homes. Environmental Research, 2009, 109, 215-224.	7.5	56
46	Differentiating Between Physical and Viable Penetrations When Challenging Respirator Filters with Bioaerosols. Clean - Soil, Air, Water, 2008, 36, 615-621.	1.1	24
47	Effect of Gaseous Chlorine Dioxide on Indoor Microbial Contaminants. Journal of the Air and Waste Management Association, 2008, 58, 647-656.	1.9	28
48	Filter Performance of N99 and N95 Facepiece Respirators Against Viruses and Ultrafine Particles. Annals of Occupational Hygiene, 2008, 52, 385-396.	1.9	133
49	A small change in the design of a slit bioaerosol impactor significantly improves its collection characteristics. Journal of Environmental Monitoring, 2007, 9, 855.	2.1	20
50	Control of Aerosol Contaminants in Indoor Air:Â Combining the Particle Concentration Reduction with Microbial Inactivation. Environmental Science & Technology, 2007, 41, 606-612.	10.0	132
51	Exposure to Varying Concentration of Fungal Spores in Grain Storage Godowns and its Effect on the Respiratory Function Status among the Workers. Industrial Health, 2007, 45, 449-461.	1.0	6
52	Estimating sampling frequency in pollen exposure assessment over time. Journal of Environmental Monitoring, 2006, 8, 955.	2.1	3
53	Personal Exposure to Airborne Dust and Microorganisms in Agricultural Environments. Journal of Occupational and Environmental Hygiene, 2006, 3, 118-130.	1.0	144
54	Do N95 respirators provide 95% protection level against airborne viruses, and how adequate are surgical masks?. American Journal of Infection Control, 2006, 34, 51-57.	2.3	317

#	Article	IF	CITATIONS
55	Correlation of ambient inhalable bioaerosols with particulate matter and ozone: A two-year study. Environmental Pollution, 2006, 140, 16-28.	7.5	141
56	Specific fungal exposures, allergic sensitization, and rhinitis in infants. Pediatric Allergy and Immunology, 2006, 17, 450-457.	2.6	45
57	Relationship between indoor and outdoor bioaerosols collected with a button inhalable aerosol sampler in urban homes. Indoor Air, 2006, 16, 37-47.	4.3	109
58	Relationship between indoor and outdoor airborne fungal spores, pollen, and (1→3)-β-D-glucan in homes without visible mold growth. Aerobiologia, 2006, 22, 227-235.	1.7	30
59	Culturability and concentration of indoor and outdoor airborne fungi in six single-family homes. Atmospheric Environment, 2006, 40, 2902-2910.	4.1	124
60	Analysis of short-term influences of ambient aeroallergens on pediatric asthma hospital visits. Science of the Total Environment, 2006, 370, 330-336.	8.0	51
61	Evaluation of ionic air purifiers for reducing aerosol exposure in confined indoor spaces. Indoor Air, 2005, 15, 235-245.	4.3	103
62	Laboratory and Field Evaluation of a New Personal Sampling System for Assessing the Protection Provided by the N95 Filtering Facepiece Respirators against Particles. Annals of Occupational Hygiene, 2005, 49, 245-57.	1.9	40
63	Respiratory Protection Provided by N95 Filtering Facepiece Respirators Against Airborne Dust and Microorganisms in Agricultural Farms. Journal of Occupational and Environmental Hygiene, 2005, 2, 577-585.	1.0	66
64	The effect of filter material on bioaerosol collection of Bacillus subtilis spores used as a Bacillus anthracis simulant. Journal of Environmental Monitoring, 2005, 7, 475.	2.1	59
65	Collection of airborne spores by circular single-stage impactors with small jet-to-plate distance. Journal of Aerosol Science, 2005, 36, 575-591.	3.8	35
66	Airborne viable, non-viable, and allergenic fungi in a rural agricultural area of India: a 2-year study at five outdoor sampling stations. Science of the Total Environment, 2004, 326, 123-141.	8.0	148
67	Effect of Fluid Type and Microbial Properties on the Aerosolization of Microorganisms from Metalworking Fluids. Aerosol Science and Technology, 2004, 38, 1139-1148.	3.1	16
68	Assessment of Electrical Charge on Airborne Microorganisms by a New Bioaerosol Sampling Method. Journal of Occupational and Environmental Hygiene, 2004, 1, 127-138.	1.0	46
69	Volumetric assessment of airborne fungi in two sections of a rural indoor dairy cattle shed. Environment International, 2004, 29, 1071-1078.	10.0	83
70	Assessment of human exposure to airborne fungi in agricultural confinements: personal inhalable sampling versus stationary sampling. Annals of Agricultural and Environmental Medicine, 2004, 11, 269-77.	1.0	30
71	Performance of the Button Personal Inhalable Sampler for the measurement of outdoor aeroallergens. Atmospheric Environment, 2003, 37, 4723-4733.	4.1	45
72	Airborne rice pollen and pollen allergen in an agricultural field: aerobiological and immunochemical evidence. Journal of Environmental Monitoring, 2003, 5, 959.	2.1	8

#	Article	IF	CITATIONS
73	Evaluation of the Survival of Bacterial Contaminants in an Inhalable Insulin Powder. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2003, 16, 55-64.	1.2	1
74	Design and Collection Efficiency of a New Electrostatic Precipitator for Bioaerosol Collection. Aerosol Science and Technology, 2002, 36, 1073-1085.	3.1	71
75	Collection of airborne microorganisms by a new electrostatic precipitator. Journal of Aerosol Science, 2002, 33, 1417-1432.	3.8	92
76	Incidence of allergenically significant fungal aerosol in a rural bakery of West Bengal, India. Mycopathologia, 2000, 149, 35-45.	3.1	15