
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1837520/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Isothermal crystallization behaviors of isotactic polypropylene nucleated with α/β compounding nucleating agents. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 590-596.	2.1	57
2	Synthesis of ZnO nanoparticle-anchored biochar composites for the selective removal of perrhenate, a surrogate for pertechnetate, from radioactive effluents. Journal of Hazardous Materials, 2020, 387, 121670.	12.4	55
3	Efficient ion-enhanced adsorption of congo red on polyacrolein from aqueous solution: Experiments, characterization and mechanism studies. Separation and Purification Technology, 2020, 252, 117445.	7.9	54
4	Effects of substituted aromatic heterocyclic phosphate salts on properties, crystallization, and melting behaviors of isotactic polypropylene. Journal of Applied Polymer Science, 2006, 100, 4868-4874.	2.6	52
5	Isothermal and nonisothermal crystallization kinetics of isotactic polypropylene nucleated with substituted aromatic heterocyclic phosphate salts. Journal of Applied Polymer Science, 2006, 101, 3307-3316.	2.6	45
6	Effects of some nucleating agents on the supercooling of erythritol to be applied as phase change material. Journal of Thermal Analysis and Calorimetry, 2017, 129, 1291-1299.	3.6	35
7	Isothermal and non-isothermal crystallization of isotactic polypropylene nucleated with 1,3,5-benzenetricarboxylic acid tris(cyclohexylamide). Thermochimica Acta, 2014, 590, 226-231.	2.7	32
8	Non-isothermal crystallization kinetics of isotactic polypropylene nucleated with 1,3:2,4-bis(3,4-dimethylbenzylidene) sorbitol. Journal of Thermal Analysis and Calorimetry, 2010, 100, 661-665.	3.6	29
9	Nano-ZnO functionalized biochar as a superhydrophobic biosorbent for selective recovery of low-concentration Re(VII) from strong acidic solutions. Minerals Engineering, 2019, 142, 105885.	4.3	29
10	Effects of cyclic carboxylate nucleating agents on nucleus density and crystallization behavior of isotactic polypropylene. Journal of Thermal Analysis and Calorimetry, 2018, 131, 1483-1490.	3.6	27
11	Crystallization and melting behaviors of isotactic polypropylene nucleated with compound nucleating agents. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 911-916.	2.1	26
12	Effect of a novel compound nucleating agent calcium sulfate whisker/β-nucleating agent dicyclohexyl-terephthalamide on crystallization and melting behavior of isotactic polypropylene. Journal of Thermal Analysis and Calorimetry, 2018, 132, 1145-1152.	3.6	26
13	Prediction of boiling points of organic compounds by QSPR tools. Journal of Molecular Graphics and Modelling, 2013, 44, 113-119.	2.4	25
14	Effects of nucleating agent 1,3,5-benzenetricarboxylic acid tris(cyclohexylamide) on properties and crystallization behaviors of isotactic polypropylene. Colloid and Polymer Science, 2014, 292, 493-498.	2.1	22
15	The relationship between crystal structure and nucleation effect of 1,3,5-benzenetricarboxylic acid tris(phenylamide) in isotactic polypropylene. Colloid and Polymer Science, 2017, 295, 619-626.	2.1	22
16	Isothermal Crystallization Behaviors of Isotactic Polypropylene Nucleated with the Third Generation Sorbitol Derivative Nucleating Agents. Journal of Macromolecular Science - Physics, 2008, 47, 891-899.	1.0	21
17	Isothermal Crystallization of Isotactic Polypropylene Nucleated with a Novel Aromatic Heterocyclic Phosphate Nucleating Agent. Journal of Macromolecular Science - Physics, 2017, 56, 811-820.	1.0	20
18	Preparation and nucleation effects of nucleating agent hexahydrophthalic acid metal salts for isotactic polypropylene. Colloid and Polymer Science, 2017, 295, 1973-1982.	2.1	19

#	Article	IF	CITATIONS
19	Effects of α/β Compound Nucleating Agents on Mechanical Properties and Crystallization Behaviors of Isotactic Polypropylene. Journal of Macromolecular Science - Physics, 2012, 51, 2352-2360.	1.0	18
20	Highly Selective Adsorption and Recovery of Palladium from Spent Catalyst Wastewater by 1,4,7,10-Tetraazacyclododecane-Modified Mesoporous Silica. ACS Sustainable Chemistry and Engineering, 2022, 10, 1103-1114.	6.7	18
21	Comparison of Nucleation Effects of Organic Phosphorous and Sorbitol Derivative Nucleating Agents in Isotactic Polypropylene. Journal of Macromolecular Science - Physics, 2008, 47, 1188-1196.	1.0	17
22	Efficient removal and recycle of acid blue 93 dye from aqueous solution by acrolein crosslinked chitosan hydrogel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 632, 127825.	4.7	17
23	The relationship between side chain isomerism of aliphatic C4 substituted 1,3,5-benzenetricarboxylamides and nucleation effects in isotactic polypropylene. Thermochimica Acta, 2017, 655, 219-225.	2.7	16
24	Adsorption of Cu(II) and Methylene Blue by Succinylated Starch Nanocrystals. Starch/Staerke, 2019, 71, 1800266.	2.1	15
25	Preparation and nucleation effect of a novel compound nucleating agent carboxylated graphene/calcium pimelate for isotactic polypropylene. Journal of Thermal Analysis and Calorimetry, 2019, 136, 2363-2371.	3.6	15
26	Metal-free DDQ-mediated oxidative C–O coupling of acetalic sp3C–H bonds with carboxylic acids. RSC Advances, 2014, 4, 54039-54042.	3.6	14
27	Thermal stability of nucleation effect of different β-nucleating agents in isotactic polypropylene. Journal of Thermal Analysis and Calorimetry, 2018, 132, 1845-1852.	3.6	14
28	Dependence of \hat{l}^2 -crystal formation of isotactic polypropylene on crystallization conditions. Journal of Polymer Research, 2020, 27, 1.	2.4	13
29	Trisiloxane functionalized melamine sponges for oil water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634, 127972.	4.7	13
30	Influences of octamethylenedicarboxylic dibenzoylhydrazide on crystallization, melting behaviors, and properties of isotactic polypropylene. Polymer Bulletin, 2019, 76, 1685-1696.	3.3	12
31	Crystallization kinetics of isotactic polypropylene nucleated with octamethylenedicarboxylic dibenzoylhydrazide under isothermal and non-isothermal conditions. Journal of Thermal Analysis and Calorimetry, 2019, 136, 749-757.	3.6	11
32	Removal of hexavalent chromium, an analogue of pertechnetate, from aqueous solution using bamboo (Acidosasa edulis) shoot shell. Journal of Radioanalytical and Nuclear Chemistry, 2019, 321, 427-437.	1.5	11
33	The influences of α/β compound nucleating agents based on octamethylenedicarboxylic dibenzoylhydrazide on crystallization and melting behavior of isotactic polypropylene. Polymers for Advanced Technologies, 2019, 30, 1777-1788.	3.2	11
34	Properties and Crystallization Behaviors of Isotactic Polypropylene Under Action of an Effective Nucleating Agent. Journal of Macromolecular Science - Physics, 2015, 54, 1019-1028.	1.0	10
35	Synergistic nucleation effect of calcium sulfate whisker and β-nucleating agent dicyclohexyl-terephthalamide in isotactic polypropylene. Journal of Thermal Analysis and Calorimetry, 2020, 139, 343-352.	3.6	10
36	Nucleation Effects of a Novel Nucleating Agent Bicyclic [2,2,1] Heptane Di-carboxylate in Isotactic Polypropylene. Journal of Macromolecular Science - Physics, 2010, 50, 266-274.	1.0	9

#	Article	IF	CITATIONS
37	Effects of different metal salts of aliphatic dicarboxylic acids on the formation of β-crystalline form in isotactic polypropylene. Journal of Thermal Analysis and Calorimetry, 2019, 137, 563-573.	3.6	9
38	The relation between chemical structure of branched amide nucleating agents and nucleation effect in isotactic polypropylene. Journal of Thermal Analysis and Calorimetry, 2021, 145, 3053-3066.	3.6	8
39	CO2 Hydrate dissolution rates in unsaturated water quantified with laboratory experiments. Chemical Engineering Journal, 2022, 430, 133137.	12.7	8
40	Nucleation effect of adipic acid metal salts in isotactic polypropylene. Journal of Thermal Analysis and Calorimetry, 2019, 135, 3321-3328.	3.6	7
41	Effect of chemical structure of hydrazide compounds on nucleation effect in isotactic polypropylene. Journal of Polymer Research, 2019, 26, 1.	2.4	7
42	Combined effect of chemically compound graphene oxide alcium pimelate on crystallization behavior, morphology and mechanical properties of isotactic polypropylene. Polymers for Advanced Technologies, 2020, 31, 2301-2311.	3.2	7
43	Effect of sodium lignosulfonate/nano calcium carbonate composite filler on properties of isotactic polypropylene. Polymer Bulletin, 2023, 80, 3103-3117.	3.3	7
44	Microwave assisted polymeric modification of graphite oxide and graphite by poly(allyl) Tj ETQq0 0 0 rgBT /Ove	rlock 10 Tf	50,462 Td (d
45	Unusual allyl diazoacetate/acrolein copolymer-based hydrogels as promising antimicrobial agents for effective bacteria therapy. Chemical Engineering Journal, 2020, 388, 124114.	12.7	6
46	Concentration-driven selective adsorption of Congo red in binary dyes solution using polyacrolein: Experiments, characterization and mechanism studies. Journal of Molecular Liquids, 2021, 335, 116230.	4.9	6
47	Effect of char-forming agents rich in tertiary carbon on flame retardant properties of polypropylene. Journal of Thermal Analysis and Calorimetry, 2022, 147, 10391-10401.	3.6	6
48	Isothermal Crystallization Behaviors of Isotactic Polypropylene Nucleated with Nucleating Agent Bicyclic [2,2,1] heptane di-carboxylate. Journal of Macromolecular Science - Physics, 2009, 48, 1125-1131.	1.0	5
49	Effect of aromatic dihydrazide compounds on crystallization behavior and mechanical properties of isotactic polypropylene. Journal of Thermal Analysis and Calorimetry, 0, , 1.	3.6	5
50	The relation between chemical structure of dicarboxylic dihydrazide compounds and nucleation effect in isotactic polypropylene. Journal of Thermal Analysis and Calorimetry, 2021, 145, 2379-2387.	3.6	5
51	Effect of a novel bio-based β-nucleating agent on the properties of isotactic polypropylene. Journal of Polymer Research, 2021, 28, 1.	2.4	5
52	A new group contribution-based method for estimation of flash point temperature of alkanes. Journal of Central South University, 2015, 22, 30-36.	3.0	4
53	Nucleation effect of $\hat{l} \pm \hat{l}^2$ compound nucleating agents based on 1,3,5-benzenetricarboxylic acid tris(cyclohexylamide) in isotactic polypropylene. Polymer Bulletin, 2019, 76, 5559-5575.	3.3	4
54	Nucleus density and crystallization behavior of isotactic polypropylene nucleated with different $\hat{1}\pm \hat{1}^2$ compound nucleating agents. Journal of Thermal Analysis and Calorimetry, 2020, 140, 2275-2282.	3.6	4

#	Article	IF	CITATIONS
55	Effects of Bicyclic [2,2,1] Heptane Di-carboxylate on Properties, Crystallization, and Melting Behaviors of Isotactic Polypropylene. International Journal of Polymer Analysis and Characterization, 2009, 14, 569-574.	1.9	3
56	Non-Isothermal Crystallization Behaviors of Isotactic Polypropylene with and without 1,3:2,4-Bis(3,4-Dimethylbenzylidene) Sorbitol as a Nucleating Agent. International Journal of Polymer Analysis and Characterization, 2010, 15, 450-459.	1.9	3
57	Nucleus density dependency of crystallization of isotactic polypropylene nucleated with nucleating agent sodium bicyclic[2,2,1]heptane dicarboxylate. Polymer Bulletin, 2018, 75, 3693-3703.	3.3	3
58	Novel Synthesis of Down-/Up-Conversion Fluorescent Oligo(2-pyrazoline)s. Industrial & Engineering Chemistry Research, 2018, 57, 12987-12992.	3.7	3
59	High-sensitivity thiocyanate spectrophotometric method for determination of perrhenate, an analogue of radioactive pertechnetate, under acidic condition. Chemical Papers, 2019, 73, 1093-1101.	2.2	3
60	UV-mediated atom transfer radical polymerization of acrolein. Polymer Bulletin, 2022, 79, 1057-1068.	3.3	3
61	The nucleation mechanism of 1-N',3-N'-dibenzoylbenzene-1,4-dicarbohydrazide as a nucleating agent for isotactic polypropylene. Journal of Polymer Research, 2022, 29, .	2.4	1
62	Non-isothermal crystallization kinetics of isotactic polypropylene nucleated with nucleating agent bicyclic [2,2,1] heptane di-carboxylate. E-Polymers, 2010, 10, .	3.0	0