Pierre Aumond

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1837296/publications.pdf

Version: 2024-02-01

687220 501076 32 841 13 28 citations h-index g-index papers 34 34 34 829 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Multidimensional analyses of the noise impacts of COVID-19 lockdown. Journal of the Acoustical Society of America, 2022, 151, 911-923.	0.5	14
2	NoiseCapture smartphone application as pedagogical support for education and public awareness. Journal of the Acoustical Society of America, 2022, 151, 3255-3265.	0.5	6
3	Global sensitivity analysis for road traffic noise modelling. Applied Acoustics, 2021, 176, 107899.	1.7	13
4	Open-source modeling chain for the dynamic assessment of road traffic noise exposure. Transportation Research, Part D: Transport and Environment, 2021, 94, 102793.	3.2	15
5	Inverse modeling and joint state-parameter estimation with a noise mapping meta-model. Journal of the Acoustical Society of America, 2021, 149, 3961-3974.	0.5	O
6	Data assimilation for urban noise mapping with a meta-model. Applied Acoustics, 2021, 178, 107938.	1.7	8
7	A Smartphone-Based Crowd-Sourced Database for Environmental Noise Assessment. International Journal of Environmental Research and Public Health, 2021, 18, 7777.	1.2	12
8	The future of urban sound environments: Impacting mobility trends and insights for noise assessment and mitigation. Applied Acoustics, 2020, 170, 107518.	1.7	19
9	A Taxonomy Proposal for the Assessment of the Changes in Soundscape Resulting from the COVID-19 Lockdown. International Journal of Environmental Research and Public Health, 2020, 17, 4205.	1.2	46
10	Method for in situ acoustic calibration of smartphone-based sound measurement applications. Applied Acoustics, 2020, 166, 107337.	1.7	12
11	Variability in sound power levels: Implications for static and dynamic traffic models. Transportation Research, Part D: Transport and Environment, 2020, 84, 102339.	3.2	5
12	Meta-modeling for urban noise mapping. Journal of the Acoustical Society of America, 2020, 148, 3671-3681.	0.5	8
13	Statistical requirements for noise mapping based on mobile measurements using bikes. Applied Acoustics, 2019, 156, 271-278.	1.7	13
14	Statistical study of the relationships between mobile and fixed stations measurements in urban environment. Building and Environment, 2019, 149, 404-414.	3.0	10
15	Auditory sensory saliency as a better predictor of change than sound amplitude in pleasantness assessment of reproduced urban soundscapes. Building and Environment, 2019, 148, 730-741.	3.0	18
16	An open-science crowdsourcing approach for producing community noise maps using smartphones. Building and Environment, 2019, 148, 20-33.	3.0	81
17	Estimation of the Perceived Time of Presence of Sources in Urban Acoustic Environments Using Deep Learning Techniques. Acta Acustica United With Acustica, 2019, 105, 1053-1066.	0.8	9
18	Estimation of road traffic noise emissions: The influence of speed and acceleration. Transportation Research, Part D: Transport and Environment, 2018, 58, 155-171.	3.2	59

#	Article	IF	CITATIONS
19	Probabilistic modeling framework for multisource sound mapping. Applied Acoustics, 2018, 139, 34-43.	1.7	18
20	Probabilistic Modelling of the Temporal Variability of Urban Sound Levels. Acta Acustica United With Acustica, 2018, 104, 94-105.	0.8	5
21	Overview of the Meso-NH model version 5.4 and its applications. Geoscientific Model Development, 2018, 11, 1929-1969.	1.3	194
22	Kriging-based spatial interpolation from measurements for sound level mapping in urban areas. Journal of the Acoustical Society of America, 2018, 143, 2847-2857.	0.5	48
23	A study of the accuracy of mobile technology for measuring urban noise pollution in large scale participatory sensing campaigns. Applied Acoustics, 2017, 117, 219-226.	1.7	40
24	An Efficient Audio Coding Scheme for Quantitative and Qualitative Large Scale Acoustic Monitoring Using the Sensor Grid Approach. Sensors, 2017, 17, 2758.	2.1	9
25	Modeling Soundscape Pleasantness Using perceptual Assessments and Acoustic Measurements Along Paths in Urban Context. Acta Acustica United With Acustica, 2017, 103, 430-443.	0.8	47
26	Global and Continuous Pleasantness Estimation of the Soundscape Perceived during Walking Trips through Urban Environments. Applied Sciences (Switzerland), 2017, 7, 144.	1.3	15
27	Cartographic Representation of Soundscape: Proposals and Assessment. Geotechnologies and the Environment, 2017, , 27-51.	0.3	1
28	Urban soundscape maps modelled with geo-referenced data. Noise Mapping, 2016, 3, .	0.7	12
29	Sound quality indicators for urban places in Paris cross-validated by Milan data. Journal of the Acoustical Society of America, 2015, 138, 2337-2348.	0.5	46
30	Application of the transmission line matrix method for outdoor sound propagation modelling – Part 1: Model presentation and evaluation. Applied Acoustics, 2014, 76, 113-118.	1.7	12
31	Application of the Transmission Line Matrix method for outdoor sound propagation modelling $\hat{a} \in \text{``Part}$ 2: Experimental validation using meteorological data derived from the meso-scale model Meso-NH. Applied Acoustics, 2014, 76, 107-112.	1.7	6
32	Including the Drag Effects of Canopies: Real Case Large-Eddy Simulation Studies. Boundary-Layer Meteorology, 2013, 146, 65-80.	1.2	38