Hai Ming

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1837146/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Review of surface plasmon resonance and localized surface plasmon resonance sensor. Photonic Sensors, 2012, 2, 37-49.	5.0	247
2	Generation and Conversion of Higher Order Optical Vortices in Optical Fiber With Helical Fiber Bragg Gratings. Journal of Lightwave Technology, 2016, 34, 2413-2418.	4.6	57
3	Diffraction-Free Bloch Surface Waves. ACS Nano, 2017, 11, 5383-5390.	14.6	52
4	Bloch surface waves confined in one dimension with a single polymeric nanofibre. Nature Communications, 2017, 8, 14330.	12.8	49
5	Label-free surface-sensitive photonic microscopy with high spatial resolution using azimuthal rotation illumination. Science Advances, 2019, 5, eaav5335.	10.3	48
6	Extending the Propagation Distance of a Silver Nanowire Plasmonic Waveguide with a Dielectric Multilayer Substrate. Nano Letters, 2018, 18, 1152-1158.	9.1	47
7	Generation of Optical Vortices Using a Helical Fiber Bragg Grating. Journal of Lightwave Technology, 2014, 32, 2152-2156.	4.6	43
8	Selective and sensitive detection of MiRNA-21 based on gold-nanorod functionalized polydiacetylene microtube waveguide. Biosensors and Bioelectronics, 2016, 85, 198-204.	10.1	40
9	Fluorescence Enhancement Caused by Plasmonics Coupling Between Silver Nano-Cubes and Silver Film. Plasmonics, 2011, 6, 213-217.	3.4	38
10	Tamm plasmon- and surface plasmon-coupled emission from hybrid plasmonic–photonic structures. Optica, 2014, 1, 407.	9.3	36
11	Plasmonic Interaction Between Silver Nano-Cubes and a Silver Ground Plane Studied by Surface-Enhanced Raman Scattering. Plasmonics, 2011, 6, 515-519.	3.4	35
12	Strong Polarization Transformation of Bloch Surface Waves. Physical Review Applied, 2018, 9, .	3.8	27
13	Speckle Suppression by Controlling the Coherence in Laser Based Projection Systems. Journal of Display Technology, 2015, 11, 330-335.	1.2	26
14	Random Distributed Feedback Fiber Laser Generating Cylindrical Vector Beams. Physical Review Applied, 2019, 11, .	3.8	26
15	Plasmonic Coupling Effect in Ag Nanocap–Nanohole Pairs for Surface-Enhanced Raman Scattering. Plasmonics, 2013, 8, 225-231.	3.4	25
16	Two-Dimensional Photonic Devices based on Bloch Surface Waves with One-Dimensional Grooves. Physical Review Applied, 2018, 10, .	3.8	21
17	Surface enhanced Raman scattering arising from plasmonic interaction between silver nano-cubes and a silver grating. Applied Physics Letters, 2013, 103, .	3.3	18
18	Large area sub-wavelength azo-polymer gratings by waveguide modes interference lithography. Applied Physics Letters, 2013, 102, 031103.	3.3	18

Hai Ming

#	Article	lF	CITATIONS
19	Back focal plane imaging of Tamm plasmons and their coupled emission. Laser and Photonics Reviews, 2014, 8, 933-940.	8.7	18
20	Selectable Surface and Bulk Fluorescence Imaging with Plasmon-Coupled Waveguides. Journal of Physical Chemistry C, 2015, 119, 22131-22136.	3.1	17
21	Silver Nanowires for Reconfigurable Bloch Surface Waves. ACS Nano, 2017, 11, 10446-10451.	14.6	17
22	Coupling of Fluorophores in Single Nanoapertures with Tamm Plasmon Structures. Journal of Physical Chemistry C, 2019, 123, 1413-1420.	3.1	15
23	Active Polymer Microfiber with Controlled Polarization Sensitivity. Advanced Optical Materials, 2016, 4, 371-377.	7.3	13
24	Excitation of Broadband Surface Plasmons with Dye Molecules. Plasmonics, 2012, 7, 309-312.	3.4	12
25	Metal–Dielectric Waveguides for High Efficiency Fluorescence Imaging. Journal of Physical Chemistry C, 2015, 119, 24081-24085.	3.1	11
26	Optical Trapping with Focused Surface Waves. Annalen Der Physik, 2020, 532, 1900497.	2.4	11
27	Polarization-Dependent Surface-Enhanced Raman Scattering via Aligned Gold Nanorods in Poly(Vinyl) Tj ETQq	1 1 0,78431 3.4	4 rgBT /Over
28	Tunable Surface-Enhanced Raman Spectroscopy via Plasmonic Coupling Between Nanodot-Arrayed Ag Film and Ag Nanocube. Plasmonics, 2013, 8, 1279-1284.	3.4	10
29	Manipulating Propagation Constants of Silver Nanowire Plasmonic Waveguide Modes Using a Dielectric Multilayer Substrate. Applied Sciences (Switzerland), 2018, 8, 144.	2.5	10
30	Nanoantenna-Assisted Extraordinary Optical Transmission Under Radial Polarization Illumination. Plasmonics, 2011, 6, 521-525.	3.4	7
31	Polymer-loaded propagating modes on a one-dimensional photonic crystal. Applied Physics Letters, 2014, 104, 061115.	3.3	7
32	Generation of enhanced evanescent Bessel beam using band-edge resonance. Journal of Applied Physics, 2010, 108, 074304.	2.5	6
33	Numerical studies on the Chin–Shifrin inversion method for particle sizing. Waves in Random and Complex Media, 2012, 22, 121-132.	2.7	6
34	All-dielectric bowtie waveguide with deep subwavelength mode confinement. Frontiers of Physics, 2018, 13, 1.	5.0	6
35	Optimized stereo matching algorithm for integral imaging microscopy and its potential use in precise 3-D optical manipulation. Optics Communications, 2019, 430, 374-379.	2.1	6
36	Contrast Enhancement in Fluorescence Microscope by Plasmonic Coupling. Plasmonics, 2012, 7, 209-214.	3.4	5

Hai Ming

#	Article	IF	CITATIONS
37	Integral Floating 3-D Display Using Two Retro-Reflector Arrays. IEEE Photonics Journal, 2017, 9, 1-8.	2.0	5
38	Gear-Like Metallic Core Fiber for Generation of a Radially Polarized Beam. Journal of Lightwave Technology, 2015, 33, 3-6.	4.6	4
39	Out-of-focal plane imaging by leakage radiation microscopy. Journal of Optics (United Kingdom), 2017, 19, 095004.	2.2	3
40	Fano resonance and polarization transformation induced by interpolarization coupling of Bloch surface waves. Physical Review B, 2019, 99, .	3.2	3
41	High Optical Efficiency Lensless 2D-3D Convertible Integral Imaging Display Using an Edge-lit Light Guide Plate. Journal of Display Technology, 2016, , 1-1.	1.2	2
42	Imaging optical fields below metal films and metal-dielectric waveguides by a scanning microscope. Journal of Applied Physics, 2017, 122, 113101.	2.5	2
43	A Novel Laser-Based Display and Imaging Combined System. IEEE Photonics Journal, 2018, 10, 1-8.	2.0	Ο
44	Depth of Field Extension in Laser Speckle Contrast Imaging. IEEE Access, 2020, 8, 31499-31506.	4.2	0
45	Resolution Enhancement of Spherical Wave-Based Holographic Stereogram with Large Depth Range. Applied Sciences (Switzerland), 2021, 11, 5595.	2.5	0