Yiming Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/183664/publications.pdf

Version: 2024-02-01

713013 331259 4,369 21 21 21 citations h-index g-index papers 21 21 21 4853 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks. Chemistry of Materials, 2010, 22, 1915-1925.	3.2	933
2	High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts. Nature Materials, 2008, 7, 626-630.	13.3	622
3	Dye-Sensitized Solar Cells with a High Absorptivity Ruthenium Sensitizer Featuring a 2-(Hexylthio)thiophene Conjugated Bipyridine. Journal of Physical Chemistry C, 2009, 113, 6290-6297.	1.5	558
4	Direct Contact of Selective Charge Extraction Layers Enables High-Efficiency Molecular Photovoltaics. Joule, 2018, 2, 1108-1117.	11.7	291
5	The role of surface passivation for efficient and photostable PbS quantum dot solar cells. Nature Energy, $2016,1,.$	19.8	279
6	A Stable Blue Photosensitizer for Color Palette of Dye-Sensitized Solar Cells Reaching 12.6% Efficiency. Journal of the American Chemical Society, 2018, 140, 2405-2408.	6.6	270
7	Copper Bipyridyl Redox Mediators for Dye-Sensitized Solar Cells with High Photovoltage. Journal of the American Chemical Society, 2016, 138, 15087-15096.	6.6	239
8	11% efficiency solid-state dye-sensitized solar cells with copper(II/I) hole transport materials. Nature Communications, 2017, 8, 15390.	5.8	229
9	A molecular photosensitizer achieves a Voc of 1.24 V enabling highly efficient and stable dye-sensitized solar cells with copper(II/I)-based electrolyte. Nature Communications, 2021, 12, 1777.	5.8	196
10	Comprehensive control of voltage loss enables 11.7% efficient solid-state dye-sensitized solar cells. Energy and Environmental Science, 2018, 11, 1779-1787.	15.6	148
11	Dye-Sensitized Solar Cells with Solvent-Free Ionic Liquid Electrolytes. Journal of Physical Chemistry C, 2008, 112, 13775-13781.	1.5	126
12	Stable and Efficient Organic Dye-Sensitized Solar Cell Based on Ionic Liquid Electrolyte. Joule, 2018, 2, 2145-2153.	11.7	94
13	New Organic Sensitizer for Stable Dye-Sensitized Solar Cells with Solvent-Free Ionic Liquid Electrolytes. Journal of Physical Chemistry C, 2008, 112, 17478-17485.	1.5	73
14	Modulating the assembly of organic dye molecules on titania nanocrystals via alkyl chain elongation for efficient mesoscopic cobalt solar cells. Physical Chemistry Chemical Physics, 2012, 14, 8282.	1.3	69
15	Electronâ€Affinityâ€Triggered Variations on the Optical and Electrical Properties of Dye Molecules Enabling Highly Efficient Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2018, 57, 14125-14128.	7.2	56
16	Tetrahydrothiophenium-Based Ionic Liquids for High Efficiency Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2008, 112, 11063-11067.	1.5	46
17	Influence of redox electrolyte on the device performance of phenothiazine based dye sensitized solar cells. New Journal of Chemistry, 2018, 42, 9045-9050.	1.4	32
18	Blue Photosensitizer with Copper(II/I) Redox Mediator for Efficient and Stable Dyeâ€Sensitized Solar Cells. Advanced Functional Materials, 2020, 30, 2004804.	7.8	30

YIMING CAO

#	Article	IF	CITATION
19	High Absorption Coefficient Cyclopentadithiophene Donor-Free Dyes for Liquid and Solid-State Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2016, 120, 15027-15034.	1.5	28
20	Electronâ€Affinityâ€Triggered Variations on the Optical and Electrical Properties of Dye Molecules Enabling Highly Efficient Dyeâ€Sensitized Solar Cells. Angewandte Chemie, 2018, 130, 14321-14324.	1.6	26
21	A Blue Photosensitizer Realizing Efficient and Stable Green Solar Cells via Color Tuning by the Electrolyte. Advanced Materials, 2020, 32, 2000193.	11.1	24