Chun Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1835808/publications.pdf

Version: 2024-02-01

101496 128225 3,902 78 36 60 citations h-index g-index papers 81 81 81 5377 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Modulating Osteoimmune Responses by Mesoporous Silica Nanoparticles. ACS Biomaterials Science and Engineering, 2022, 8, 4110-4122.	2.6	17
2	Dendritic Mesoporous Nanoparticles: Structure, Synthesis and Properties. Angewandte Chemie, 2022, 134, .	1.6	30
3	Dendritic Mesoporous Nanoparticles: Structure, Synthesis and Properties. Angewandte Chemie - International Edition, 2022, 61, .	7.2	52
4	Advances in porous inorganic nanomaterials for bone regeneration., 2022, 1, 9130005.		6
5	In vivo non-invasive confocal fluorescence imaging beyond 1,700 nm using superconducting nanowire single-photon detectors. Nature Nanotechnology, 2022, 17, 653-660.	15.6	88
6	Recent advances in porous nanomaterials-based drug delivery systems for cancer immunotherapy. Journal of Nanobiotechnology, 2022, 20, .	4.2	19
7	Recent Advances in Silica-Nanomaterial-Assisted Lateral Flow Assay. Bioengineering, 2022, 9, 266.	1.6	2
8	Nanotechnology for the management of COVID-19 during the pandemic and in the post-pandemic era. National Science Review, 2022, 9, .	4.6	11
9	Hierarchical dual-porous hydroxyapatite doped dendritic mesoporous silica nanoparticles based scaffolds promote osteogenesis in vitro and in vivo. Nano Research, 2021, 14, 770-777.	5.8	29
10	Rambutan-like silica nanoparticles at tailored particle sizes for plasmid DNA delivery. Journal of Materials Science, 2021, 56, 5830-5844.	1.7	12
11	Co-delivery of siPTPN13 and siNOX4 $\langle i \rangle$ via $\langle i \rangle$ (myo)fibroblast-targeting polymeric micelles for idiopathic pulmonary fibrosis therapy. Theranostics, 2021, 11, 3244-3261.	4.6	14
12	In vivo NIR-II structured-illumination light-sheet microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	39
13	Impact of photobiomodulation using four diode laser wavelengths of on cationic liposome gene transfection into pre-osteoblast cells. Journal of Photochemistry and Photobiology B: Biology, 2021, 215, 112108.	1.7	7
14	Calcium-Doped Silica Nanoparticles Mixed with Phosphate-Doped Silica Nanoparticles for Rapid and Stable Occlusion of Dentin Tubules. ACS Applied Nano Materials, 2021, 4, 8761-8769.	2.4	4
15	Multimaterial bioprinting and combination of processing techniques towards the fabrication of biomimetic tissues and organs. Biofabrication, 2021, 13, 042002.	3.7	42
16	Microbial Decontamination and Antibacterial Activity of Nanostructured Titanium Dental Implants: A Narrative Review. Nanomaterials, 2021, 11, 2336.	1.9	16
17	Regenerative Approaches in Orthodontic and Orthopedic Treatment. , 2021, , 151-170.		0
18	Tooth Bioengineering and Whole Tooth Regeneration. , 2021, , 89-102.		3

#	Article	IF	Citations
19	Efficient transfection and long-term stability of rno-miRNA-26a-5p for osteogenic differentiation by large pore sized mesoporous silica nanoparticles. Journal of Materials Chemistry B, 2021, 9, 2275-2284.	2.9	15
20	Nanobiomaterials in Craniofacial Bone Regeneration., 2021,, 25-52.		0
21	Targeting Innate Immunity in Breast Cancer Therapy: A Narrative Review. Frontiers in Immunology, 2021, 12, 771201.	2.2	14
22	Enhanced eradication of bacterial biofilms with DNase I-loaded silver-doped mesoporous silica nanoparticles. Nanoscale, 2020, 12, 2328-2332.	2.8	53
23	Additively manufactured iron-manganese for biodegradable porous load-bearing bone scaffold applications. Acta Biomaterialia, 2020, 103, 346-360.	4.1	111
24	Non-antibiotic antimicrobial agents to combat biofilm-forming bacteria. Journal of Global Antimicrobial Resistance, 2020, 21, 445-451.	0.9	53
25	Biomedical application of mesoporous silica nanoparticles as delivery systems: a biological safety perspective. Journal of Materials Chemistry B, 2020, 8, 9863-9876.	2.9	45
26	Inhibition of glycolysis by targeting lactate dehydrogenase A facilitates hyaluronan synthase 2 synthesis in synovial fibroblasts of temporomandibular joint osteoarthritis. Bone, 2020, 141, 115584.	1.4	17
27	Microengineered poly(HEMA) hydrogels for wearable contact lens biosensing. Lab on A Chip, 2020, 20, 4205-4214.	3.1	27
28	Bioinspired scaffolds with hierarchical structures for tailored mechanical behaviour and cell migration. Ceramics International, 2020, 46, 24102-24109.	2.3	9
29	Biodegradable <i>β</i> à€€yclodextrin Conjugated Gelatin Methacryloyl Microneedle for Delivery of Waterâ€Insoluble Drug. Advanced Healthcare Materials, 2020, 9, e2000527.	3.9	91
30	Thermosensitive bFGF-Modified Hydrogel with Dental Pulp Stem Cells on Neuroinflammation of Spinal Cord Injury. ACS Omega, 2020, 5, 16064-16075.	1.6	48
31	Tissue Engineering: Synthetic Biology and Tissue Engineering: Toward Fabrication of Complex and Smart Cellular Constructs (Adv. Funct. Mater. 26/2020). Advanced Functional Materials, 2020, 30, 2070169.	7.8	0
32	Synthetic Biology and Tissue Engineering: Toward Fabrication of Complex and Smart Cellular Constructs. Advanced Functional Materials, 2020, 30, 1909882.	7.8	19
33	Polymer–Mesoporous Silica Nanoparticle Core–Shell Nanofibers as a Dual-Drug-Delivery System for Guided Tissue Regeneration. ACS Applied Nano Materials, 2020, 3, 1457-1467.	2.4	49
34	Mesoporous silica rods with cone shaped pores modulate inflammation and deliver BMP-2 for bone regeneration. Nano Research, 2020, 13, 2323-2331.	5.8	39
35	Experimental and numerical investigation of the toughening mechanisms in bioinspired composites prepared by freeze casting. Composites Science and Technology, 2019, 182, 107768.	3.8	14
36	Electrospinning of silica nanoparticles-entrapped nanofibers for sustained gentamicin release. Biochemical and Biophysical Research Communications, 2019, 516, 1085-1089.	1.0	26

#	Article	IF	CITATIONS
37	Nanotherapy: Nanotherapy in Joints: Increasing Endogenous Hyaluronan Production by Delivering Hyaluronan Synthase 2 (Adv. Mater. 46/2019). Advanced Materials, 2019, 31, 1970331.	11.1	4
38	Nanotherapy in Joints: Increasing Endogenous Hyaluronan Production by Delivering Hyaluronan Synthase 2. Advanced Materials, 2019, 31, e1904535.	11.1	51
39	Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Materials Today Bio, 2019, 1, 100008.	2.6	312
40	Mesoporous Silica Nanoparticles for Protein Protection and Delivery. Frontiers in Chemistry, 2019, 7, 290.	1.8	159
41	Exploring the Role of Manganese on the Microstructure, Mechanical Properties, Biodegradability, and Biocompatibility of Porous Iron-Based Scaffolds. ACS Biomaterials Science and Engineering, 2019, 5, 1686-1702.	2.6	62
42	The Regenerative Applicability of Bioactive Glass and Beta-Tricalcium Phosphate in Bone Tissue Engineering: A Transformation Perspective. Journal of Functional Biomaterials, 2019, 10, 16.	1.8	22
43	3D printed \hat{I}^2 -TCP scaffold with sphingosine 1-phosphate coating promotes osteogenesis and inhibits inflammation. Biochemical and Biophysical Research Communications, 2019, 512, 889-895.	1.0	23
44	Nanoengineered hollow mesoporous silica nanoparticles for the delivery of antimicrobial proteins into biofilms. Journal of Materials Chemistry B, 2018, 6, 1899-1902.	2.9	46
45	Microenvironment construction of strontium–calcium-based biomaterials for bone tissue regeneration: the equilibrium effect of calcium to strontium. Journal of Materials Chemistry B, 2018, 6, 2332-2339.	2.9	41
46	Room temperature synthesis of dendritic mesoporous silica nanoparticles with small sizes and enhanced mRNA delivery performance. Journal of Materials Chemistry B, 2018, 6, 4089-4095.	2.9	52
47	Double-layered microsphere based dual growth factor delivery system for guided bone regeneration. RSC Advances, 2018, 8, 16503-16512.	1.7	18
48	Core–Shellâ€structured Dendritic Mesoporous Silica Nanoparticles for Combined Photodynamic Therapy and Antibody Delivery. Chemistry - an Asian Journal, 2017, 12, 1465-1469.	1.7	23
49	Asymmetric Silica Nanoparticles with Tunable Head–Tail Structures Enhance Hemocompatibility and Maturation of Immune Cells. Journal of the American Chemical Society, 2017, 139, 6321-6328.	6.6	105
50	Glucose-Responsive Nanosystem Mimicking the Physiological Insulin Secretion via an Enzyme–Polymer Layer-by-Layer Coating Strategy. Chemistry of Materials, 2017, 29, 7725-7732.	3.2	46
51	Dendritic mesoporous silica–titania nanospheres with enhanced photocatalytic activities. New Journal of Chemistry, 2017, 41, 8754-8760.	1.4	15
52	Rattle-type magnetic mesoporous hollow carbon as a high-performance and reusable adsorbent for water treatment. Chemosphere, 2017, 166, 109-117.	4.2	24
53	Poly(Lactic-co-Glycolic Acid): Applications and Future Prospects for Periodontal Tissue Regeneration. Polymers, 2017, 9, 189.	2.0	141
54	Engineering Iron Oxide Hollow Nanospheres to Enhance Antimicrobial Property: Understanding the Cytotoxic Origin in Organic Rich Environment. Advanced Functional Materials, 2016, 26, 5408-5418.	7.8	46

#	Article	IF	CITATIONS
55	Binder-Free TiO2 Monolith-Packed Pipette Tips for the Enrichment of Phosphorylated Peptides. Australian Journal of Chemistry, 2016, 69, 1396.	0.5	5
56	In situ Stöber templating: facile synthesis of hollow mesoporous carbon spheres from silica–polymer composites for ultra-high level in-cavity adsorption. Journal of Materials Chemistry A, 2016, 4, 9063-9071.	5.2	73
57	Surfactant-Free Assembly of Mesoporous Carbon Hollow Spheres with Large Tunable Pore Sizes. ACS Nano, 2016, 10, 4579-4586.	7.3	374
58	Silica Nanopollens Enhance Adhesion for Long-Term Bacterial Inhibition. Journal of the American Chemical Society, 2016, 138, 6455-6462.	6.6	219
59	Kinetically Controlled Assembly of Nitrogenâ€Doped Invaginated Carbon Nanospheres with Tunable Mesopores. Chemistry - A European Journal, 2016, 22, 14962-14967.	1.7	21
60	A Vesicle Supraâ€Assembly Approach to Synthesize Amineâ€Functionalized Hollow Dendritic Mesoporous Silica Nanospheres for Protein Delivery. Small, 2016, 12, 5169-5177.	5.2	72
61	Hollow Nanospheres: Engineering Iron Oxide Hollow Nanospheres to Enhance Antimicrobial Property: Understanding the Cytotoxic Origin in Organic Rich Environment (Adv. Funct. Mater. 30/2016). Advanced Functional Materials, 2016, 26, 5579-5579.	7.8	0
62	The effect of mesoporous bioglass on osteogenesis and adipogenesis of osteoporotic BMSCs. Journal of Biomedical Materials Research - Part A, 2016, 104, 3004-3014.	2.1	28
63	Ultrasensitive ELISA ⁺ enhanced by dendritic mesoporous silica nanoparticles. Journal of Materials Chemistry B, 2016, 4, 4975-4979.	2.9	39
64	Small-sized and large-pore dendritic mesoporous silica nanoparticles enhance antimicrobial enzyme delivery. Journal of Materials Chemistry B, 2016, 4, 2646-2653.	2.9	87
65	Photoacoustic "nanobombs―fight against undesirable vesicular compartmentalization of anticancer drugs. Scientific Reports, 2015, 5, 15527.	1.6	13
66	Coreâ€Cone Structured Monodispersed Mesoporous Silica Nanoparticles with Ultraâ€large Cavity for Protein Delivery. Small, 2015, 11, 5949-5955.	5.2	140
67	Dichloroacetate blocks aerobic glycolytic adaptation to attenuated measles virus and promotes viral replication leading to enhanced oncolysis in glioblastoma. Oncotarget, 2015, 6, 1544-1555.	0.8	35
68	Biphasic Synthesis of Largeâ€Pore and Wellâ€Dispersed Benzene Bridged Mesoporous Organosilica Nanoparticles for Intracellular Protein Delivery. Small, 2015, 11, 2743-2749.	5.2	82
69	Mesoporous materials modified by aptamers and hydrophobic groups assist ultra-sensitive insulin detection in serum. Chemical Communications, 2015, 51, 13642-13645.	2.2	11
70	Synthesis of silica nanoparticles with controllable surface roughness for therapeutic protein delivery. Journal of Materials Chemistry B, 2015, 3, 8477-8485.	2.9	36
71	Shaping Nanoparticles with Hydrophilic Compositions and Hydrophobic Properties as Nanocarriers for Antibiotic Delivery. ACS Central Science, 2015, 1, 328-334.	5.3	65
72	Anti-angiogenic efficacy of 5′-triphosphate siRNA combining VEGF silencing and RIG-I activation in NSCLCs. Oncotarget, 2015, 6, 29664-29674.	0.8	20

Сним Хи

#	Article	IF	CITATION
73	Modulating in vitro release and solubility of griseofulvin using functionalized mesoporous silica nanoparticles. Journal of Colloid and Interface Science, 2014, 434, 218-225.	5.0	62
74	Curcumin-cyclodextrin encapsulated chitosan nanoconjugates with enhanced solubility and cell cytotoxicity. Colloids and Surfaces B: Biointerfaces, 2014, 117, 520-527.	2.5	86
75	Sensitive Detection of Human Insulin Using a Designed Combined Pore Approach. Small, 2014, 10, 2413-2418.	5.2	10
76	Floating tablets from mesoporous silica nanoparticles. Journal of Materials Chemistry B, 2014, 2, 8298-8302.	2.9	37
77	Rod-like mesoporous silica nanoparticles with rough surfaces for enhanced cellular delivery. Journal of Materials Chemistry B, 2014, 2, 253-256.	2.9	61
78	Chitosan as a barrier membrane material in periodontal tissue regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 1435-1443.	1.6	114