Chun Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1835808/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surfactant-Free Assembly of Mesoporous Carbon Hollow Spheres with Large Tunable Pore Sizes. ACS Nano, 2016, 10, 4579-4586.	14.6	374
2	Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Materials Today Bio, 2019, 1, 100008.	5.5	312
3	Silica Nanopollens Enhance Adhesion for Long-Term Bacterial Inhibition. Journal of the American Chemical Society, 2016, 138, 6455-6462.	13.7	219
4	Mesoporous Silica Nanoparticles for Protein Protection and Delivery. Frontiers in Chemistry, 2019, 7, 290.	3.6	159
5	Poly(Lactic-co-Clycolic Acid): Applications and Future Prospects for Periodontal Tissue Regeneration. Polymers, 2017, 9, 189.	4.5	141
6	Coreâ€Cone Structured Monodispersed Mesoporous Silica Nanoparticles with Ultraâ€large Cavity for Protein Delivery. Small, 2015, 11, 5949-5955.	10.0	140
7	Chitosan as a barrier membrane material in periodontal tissue regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 1435-1443.	3.4	114
8	Additively manufactured iron-manganese for biodegradable porous load-bearing bone scaffold applications. Acta Biomaterialia, 2020, 103, 346-360.	8.3	111
9	Asymmetric Silica Nanoparticles with Tunable Head–Tail Structures Enhance Hemocompatibility and Maturation of Immune Cells. Journal of the American Chemical Society, 2017, 139, 6321-6328.	13.7	105
10	Biodegradable <i>β</i> â€Cyclodextrin Conjugated Gelatin Methacryloyl Microneedle for Delivery of Waterâ€Insoluble Drug. Advanced Healthcare Materials, 2020, 9, e2000527.	7.6	91
11	In vivo non-invasive confocal fluorescence imaging beyond 1,700 nm using superconducting nanowire single-photon detectors. Nature Nanotechnology, 2022, 17, 653-660.	31.5	88
12	Small-sized and large-pore dendritic mesoporous silica nanoparticles enhance antimicrobial enzyme delivery. Journal of Materials Chemistry B, 2016, 4, 2646-2653.	5.8	87
13	Curcumin-cyclodextrin encapsulated chitosan nanoconjugates with enhanced solubility and cell cytotoxicity. Colloids and Surfaces B: Biointerfaces, 2014, 117, 520-527.	5.0	86
14	Biphasic Synthesis of Largeâ€Pore and Wellâ€Dispersed Benzene Bridged Mesoporous Organosilica Nanoparticles for Intracellular Protein Delivery. Small, 2015, 11, 2743-2749.	10.0	82
15	In situ Stöber templating: facile synthesis of hollow mesoporous carbon spheres from silica–polymer composites for ultra-high level in-cavity adsorption. Journal of Materials Chemistry A, 2016, 4, 9063-9071.	10.3	73
16	A Vesicle Supraâ€Assembly Approach to Synthesize Amineâ€Functionalized Hollow Dendritic Mesoporous Silica Nanospheres for Protein Delivery. Small, 2016, 12, 5169-5177.	10.0	72
17	Shaping Nanoparticles with Hydrophilic Compositions and Hydrophobic Properties as Nanocarriers for Antibiotic Delivery. ACS Central Science, 2015, 1, 328-334.	11.3	65
18	Modulating in vitro release and solubility of griseofulvin using functionalized mesoporous silica nanoparticles. Journal of Colloid and Interface Science, 2014, 434, 218-225.	9.4	62

#	Article	IF	CITATIONS
19	Exploring the Role of Manganese on the Microstructure, Mechanical Properties, Biodegradability, and Biocompatibility of Porous Iron-Based Scaffolds. ACS Biomaterials Science and Engineering, 2019, 5, 1686-1702.	5.2	62
20	Rod-like mesoporous silica nanoparticles with rough surfaces for enhanced cellular delivery. Journal of Materials Chemistry B, 2014, 2, 253-256.	5.8	61
21	Enhanced eradication of bacterial biofilms with DNase I-loaded silver-doped mesoporous silica nanoparticles. Nanoscale, 2020, 12, 2328-2332.	5.6	53
22	Non-antibiotic antimicrobial agents to combat biofilm-forming bacteria. Journal of Clobal Antimicrobial Resistance, 2020, 21, 445-451.	2.2	53
23	Room temperature synthesis of dendritic mesoporous silica nanoparticles with small sizes and enhanced mRNA delivery performance. Journal of Materials Chemistry B, 2018, 6, 4089-4095.	5.8	52
24	Dendritic Mesoporous Nanoparticles: Structure, Synthesis and Properties. Angewandte Chemie - International Edition, 2022, 61, .	13.8	52
25	Nanotherapy in Joints: Increasing Endogenous Hyaluronan Production by Delivering Hyaluronan Synthase 2. Advanced Materials, 2019, 31, e1904535.	21.0	51
26	Polymer–Mesoporous Silica Nanoparticle Core–Shell Nanofibers as a Dual-Drug-Delivery System for Guided Tissue Regeneration. ACS Applied Nano Materials, 2020, 3, 1457-1467.	5.0	49
27	Thermosensitive bFGF-Modified Hydrogel with Dental Pulp Stem Cells on Neuroinflammation of Spinal Cord Injury. ACS Omega, 2020, 5, 16064-16075.	3.5	48
28	Engineering Iron Oxide Hollow Nanospheres to Enhance Antimicrobial Property: Understanding the Cytotoxic Origin in Organic Rich Environment. Advanced Functional Materials, 2016, 26, 5408-5418.	14.9	46
29	Glucose-Responsive Nanosystem Mimicking the Physiological Insulin Secretion via an Enzyme–Polymer Layer-by-Layer Coating Strategy. Chemistry of Materials, 2017, 29, 7725-7732.	6.7	46
30	Nanoengineered hollow mesoporous silica nanoparticles for the delivery of antimicrobial proteins into biofilms. Journal of Materials Chemistry B, 2018, 6, 1899-1902.	5.8	46
31	Biomedical application of mesoporous silica nanoparticles as delivery systems: a biological safety perspective. Journal of Materials Chemistry B, 2020, 8, 9863-9876.	5.8	45
32	Multimaterial bioprinting and combination of processing techniques towards the fabrication of biomimetic tissues and organs. Biofabrication, 2021, 13, 042002.	7.1	42
33	Microenvironment construction of strontium–calcium-based biomaterials for bone tissue regeneration: the equilibrium effect of calcium to strontium. Journal of Materials Chemistry B, 2018, 6, 2332-2339.	5.8	41
34	Ultrasensitive ELISA ⁺ enhanced by dendritic mesoporous silica nanoparticles. Journal of Materials Chemistry B, 2016, 4, 4975-4979.	5.8	39
35	Mesoporous silica rods with cone shaped pores modulate inflammation and deliver BMP-2 for bone regeneration. Nano Research, 2020, 13, 2323-2331.	10.4	39
36	In vivo NIR-II structured-illumination light-sheet microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	39

#	Article	IF	CITATIONS
37	Floating tablets from mesoporous silica nanoparticles. Journal of Materials Chemistry B, 2014, 2, 8298-8302.	5.8	37
38	Synthesis of silica nanoparticles with controllable surface roughness for therapeutic protein delivery. Journal of Materials Chemistry B, 2015, 3, 8477-8485.	5.8	36
39	Dichloroacetate blocks aerobic glycolytic adaptation to attenuated measles virus and promotes viral replication leading to enhanced oncolysis in glioblastoma. Oncotarget, 2015, 6, 1544-1555.	1.8	35
40	Dendritic Mesoporous Nanoparticles: Structure, Synthesis and Properties. Angewandte Chemie, 2022, 134, .	2.0	30
41	Hierarchical dual-porous hydroxyapatite doped dendritic mesoporous silica nanoparticles based scaffolds promote osteogenesis in vitro and in vivo. Nano Research, 2021, 14, 770-777.	10.4	29
42	The effect of mesoporous bioglass on osteogenesis and adipogenesis of osteoporotic BMSCs. Journal of Biomedical Materials Research - Part A, 2016, 104, 3004-3014.	4.0	28
43	Microengineered poly(HEMA) hydrogels for wearable contact lens biosensing. Lab on A Chip, 2020, 20, 4205-4214.	6.0	27
44	Electrospinning of silica nanoparticles-entrapped nanofibers for sustained gentamicin release. Biochemical and Biophysical Research Communications, 2019, 516, 1085-1089.	2.1	26
45	Rattle-type magnetic mesoporous hollow carbon as a high-performance and reusable adsorbent for water treatment. Chemosphere, 2017, 166, 109-117.	8.2	24
46	Core–Shellâ€structured Dendritic Mesoporous Silica Nanoparticles for Combined Photodynamic Therapy and Antibody Delivery. Chemistry - an Asian Journal, 2017, 12, 1465-1469.	3.3	23
47	3D printed β-TCP scaffold with sphingosine 1-phosphate coating promotes osteogenesis and inhibits inflammation. Biochemical and Biophysical Research Communications, 2019, 512, 889-895.	2.1	23
48	The Regenerative Applicability of Bioactive Glass and Beta-Tricalcium Phosphate in Bone Tissue Engineering: A Transformation Perspective. Journal of Functional Biomaterials, 2019, 10, 16.	4.4	22
49	Kinetically Controlled Assembly of Nitrogenâ€Đoped Invaginated Carbon Nanospheres with Tunable Mesopores. Chemistry - A European Journal, 2016, 22, 14962-14967.	3.3	21
50	Anti-angiogenic efficacy of 5′-triphosphate siRNA combining VEGF silencing and RIG-I activation in NSCLCs. Oncotarget, 2015, 6, 29664-29674.	1.8	20
51	Synthetic Biology and Tissue Engineering: Toward Fabrication of Complex and Smart Cellular Constructs. Advanced Functional Materials, 2020, 30, 1909882.	14.9	19
52	Recent advances in porous nanomaterials-based drug delivery systems for cancer immunotherapy. Journal of Nanobiotechnology, 2022, 20, .	9.1	19
53	Double-layered microsphere based dual growth factor delivery system for guided bone regeneration. RSC Advances, 2018, 8, 16503-16512.	3.6	18
54	Inhibition of glycolysis by targeting lactate dehydrogenase A facilitates hyaluronan synthase 2 synthesis in synovial fibroblasts of temporomandibular joint osteoarthritis. Bone, 2020, 141, 115584.	2.9	17

#	Article	IF	CITATIONS
55	Modulating Osteoimmune Responses by Mesoporous Silica Nanoparticles. ACS Biomaterials Science and Engineering, 2022, 8, 4110-4122.	5.2	17
56	Microbial Decontamination and Antibacterial Activity of Nanostructured Titanium Dental Implants: A Narrative Review. Nanomaterials, 2021, 11, 2336.	4.1	16
57	Dendritic mesoporous silica–titania nanospheres with enhanced photocatalytic activities. New Journal of Chemistry, 2017, 41, 8754-8760.	2.8	15
58	Efficient transfection and long-term stability of rno-miRNA-26a-5p for osteogenic differentiation by large pore sized mesoporous silica nanoparticles. Journal of Materials Chemistry B, 2021, 9, 2275-2284.	5.8	15
59	Experimental and numerical investigation of the toughening mechanisms in bioinspired composites prepared by freeze casting. Composites Science and Technology, 2019, 182, 107768.	7.8	14
60	Co-delivery of siPTPN13 and siNOX4 <i>via</i> (myo)fibroblast-targeting polymeric micelles for idiopathic pulmonary fibrosis therapy. Theranostics, 2021, 11, 3244-3261.	10.0	14
61	Targeting Innate Immunity in Breast Cancer Therapy: A Narrative Review. Frontiers in Immunology, 2021, 12, 771201.	4.8	14
62	Photoacoustic "nanobombs―fight against undesirable vesicular compartmentalization of anticancer drugs. Scientific Reports, 2015, 5, 15527.	3.3	13
63	Rambutan-like silica nanoparticles at tailored particle sizes for plasmid DNA delivery. Journal of Materials Science, 2021, 56, 5830-5844.	3.7	12
64	Mesoporous materials modified by aptamers and hydrophobic groups assist ultra-sensitive insulin detection in serum. Chemical Communications, 2015, 51, 13642-13645.	4.1	11
65	Nanotechnology for the management of COVID-19 during the pandemic and in the post-pandemic era. National Science Review, 2022, 9, .	9.5	11
66	Sensitive Detection of Human Insulin Using a Designed Combined Pore Approach. Small, 2014, 10, 2413-2418.	10.0	10
67	Bioinspired scaffolds with hierarchical structures for tailored mechanical behaviour and cell migration. Ceramics International, 2020, 46, 24102-24109.	4.8	9
68	Impact of photobiomodulation using four diode laser wavelengths of on cationic liposome gene transfection into pre-osteoblast cells. Journal of Photochemistry and Photobiology B: Biology, 2021, 215, 112108.	3.8	7
69	Advances in porous inorganic nanomaterials for bone regeneration. , 2022, 1, 9130005.		6
70	Binder-Free TiO2 Monolith-Packed Pipette Tips for the Enrichment of Phosphorylated Peptides. Australian Journal of Chemistry, 2016, 69, 1396.	0.9	5
71	Nanotherapy: Nanotherapy in Joints: Increasing Endogenous Hyaluronan Production by Delivering Hyaluronan Synthase 2 (Adv. Mater. 46/2019). Advanced Materials, 2019, 31, 1970331.	21.0	4
72	Calcium-Doped Silica Nanoparticles Mixed with Phosphate-Doped Silica Nanoparticles for Rapid and Stable Occlusion of Dentin Tubules. ACS Applied Nano Materials, 2021, 4, 8761-8769.	5.0	4

#	Article	IF	CITATIONS
73	Tooth Bioengineering and Whole Tooth Regeneration. , 2021, , 89-102.		3
74	Recent Advances in Silica-Nanomaterial-Assisted Lateral Flow Assay. Bioengineering, 2022, 9, 266.	3.5	2
75	Hollow Nanospheres: Engineering Iron Oxide Hollow Nanospheres to Enhance Antimicrobial Property: Understanding the Cytotoxic Origin in Organic Rich Environment (Adv. Funct. Mater. 30/2016). Advanced Functional Materials, 2016, 26, 5579-5579.	14.9	0
76	Tissue Engineering: Synthetic Biology and Tissue Engineering: Toward Fabrication of Complex and Smart Cellular Constructs (Adv. Funct. Mater. 26/2020). Advanced Functional Materials, 2020, 30, 2070169.	14.9	0
77	Regenerative Approaches in Orthodontic and Orthopedic Treatment. , 2021, , 151-170.		0
78	Nanobiomaterials in Craniofacial Bone Regeneration. , 2021, , 25-52.		0