Hongbo Geng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1835528/publications.pdf

Version: 2024-02-01

257101 197535 2,603 59 24 49 h-index citations g-index papers 61 61 61 2493 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tuning the Kinetics of Zincâ€lon Insertion/Extraction in V ₂ O ₅ by In Situ Polyaniline Intercalation Enables Improved Aqueous Zincâ€lon Storage Performance. Advanced Materials, 2020, 32, e2001113.	11.1	357
2	Electronic Structure Regulation of Layered Vanadium Oxide via Interlayer Doping Strategy toward Superior Highâ€Rate and Lowâ€Temperature Zincâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 1907684.	7.8	259
3	Co ₉ S ₈ /MoS ₂ Yolk–Shell Spheres for Advanced Li/Na Storage. Small, 2017, 13, 1603490.	5.2	162
4	Persistent zinc-ion storage in mass-produced V2O5 architectures. Nano Energy, 2019, 60, 171-178.	8.2	149
5	Synergistically Tuning Electronic Structure of Porous βâ€Mo ₂ C Spheres by Co Doping and Moâ€Vacancies Defect Engineering for Optimizing Hydrogen Evolution Reaction Activity. Advanced Functional Materials, 2020, 30, 2000561.	7.8	141
6	Boosting Transport Kinetics of Cobalt Sulfides Yolk–Shell Spheres by Anion Doping for Advanced Lithium and Sodium Storage. ChemSusChem, 2020, 13, 4078-4085.	3.6	106
7	Achieving Ultrahighâ€Rate and Highâ€Safety Li ⁺ Storage Based on Interconnected Tunnel Structure in Microâ€Size Niobium Tungsten Oxides. Advanced Materials, 2020, 32, e1905295.	11.1	95
8	Tuning the electronic structure of layered vanadium pentoxide by pre-intercalation of potassium ions for superior room/low-temperature aqueous zinc-ion batteries. Nanoscale, 2021, 13, 2399-2407.	2.8	86
9	Nanostructured Li ₃ V ₂ (PO ₄) ₃ Cathodes. Small, 2018, 14, e1800567.	5.2	85
10	Vinyl Ethylene Carbonate as an Effective SEI-Forming Additive in Carbonate-Based Electrolyte for Lithium-Metal Anodes. ACS Applied Materials & Samp; Interfaces, 2019, 11, 6118-6125.	4.0	80
11	Topotactic Transformation Synthesis of 2D Ultrathin GeS ₂ Nanosheets toward High-Rate and High-Energy-Density Sodium-Ion Half/Full Batteries. ACS Nano, 2020, 14, 531-540.	7.3	71
12	SbPS4: A novel anode for high-performance sodium-ion batteries. Chinese Chemical Letters, 2022, 33, 470-474.	4.8	62
13	Highly Dispersive MoP Nanoparticles Anchored on Reduced Graphene Oxide Nanosheets for an Efficient Hydrogen Evolution Reaction Electrocatalyst. ACS Applied Materials & Samp; Interfaces, 2018, 10, 26258-26263.	4.0	60
14	Interlayer Engineering of Molybdenum Trioxide toward High apacity and Stable Sodium Ion Half/Full Batteries. Advanced Functional Materials, 2020, 30, 2001708.	7.8	58
15	Interface and structure engineering of bimetallic selenides toward high-performance sodium-ion half/full batteries. Journal of Power Sources, 2021, 506, 230216.	4.0	55
16	Vanadiumâ€based metalâ€organic frameworks and their derivatives for electrochemical energy conversion and storage. SmartMat, 2022, 3, 384-416.	6.4	51
17	<i>ln situ</i> construction of active interfaces towards improved high-rate performance of CoSe ₂ . Journal of Materials Chemistry A, 2021, 9, 14582-14592.	5.2	44
18	Interface and electronic structure dual-engineering on MoSe2 with multi-ion/electron transportation channels for boosted sodium-ion half/full batteries. Chemical Engineering Journal, 2022, 450, 138007.	6.6	44

#	Article	IF	Citations
19	Amorphous Bimetallic Oxides Fe–V–O with Tunable Compositions toward Rechargeable Zn-Ion Batteries with Excellent Low-Temperature Performance. ACS Applied Materials & Interfaces, 2020, 12, 11753-11760.	4.0	38
20	Rational synthesis of graphene-encapsulated uniform MnMoO4 hollow spheres as long-life and high-rate anodes for lithium-ion batteries. Journal of Colloid and Interface Science, 2018, 524, 256-262.	5.0	36
21	Carbon intercalated porous NaTi ₂ (PO ₄) ₃ spheres as high-rate and ultralong-life anodes for rechargeable sodium-ion batteries. Materials Chemistry Frontiers, 2017, 1, 1435-1440.	3.2	34
22	Inâ€Situ Lattice Tunnel Intercalation of Vanadium Pentoxide for Improving Longâ€Term Performance of Rechargeable Magnesium Batteries. ChemNanoMat, 2022, 8, .	1.5	32
23	Synthesis of graphene wrapped porous CoMoO ₄ nanospheres as high-performance anodes for rechargeable lithium-ion batteries. RSC Advances, 2017, 7, 51506-51511.	1.7	29
24	Optimization of the Hydrogenâ€Adsorption Free Energy of Ruâ€Based Catalysts towards Highâ€Efficiency Hydrogen Evolution Reaction at all pH. Chemistry - A European Journal, 2019, 25, 8579-8584.	1.7	28
25	Enhanced Zn2+ transfer dynamics via a 3D bird nest-like VO2/MXene heterojunction for ultrahigh-rate aqueous zinc-ion batteries. Journal of Power Sources, 2022, 520, 230872.	4.0	28
26	Threeâ€Dimensional Graphene/Ag Aerogel for Durable and Stable Li Metal Anodes in Carbonateâ€Based Electrolytes. Chemistry - A European Journal, 2019, 25, 5036-5042.	1.7	25
27	Suppressing vanadium dissolution of V ₂ O ₅ <i>via in situ</i> polyethylene glycol intercalation towards ultralong lifetime room/low-temperature zinc-ion batteries. Nanoscale, 2021, 13, 17040-17048.	2.8	23
28	Double-Layer N,S-Codoped Carbon Protection of MnS Nanoparticles Enabling Ultralong-Life and High-Rate Lithium Ion Storage. ACS Applied Energy Materials, 2018, 1, 4867-4873.	2.5	22
29	Sustainable development of graphitic carbon nanosheets from plastic wastes with efficient photothermal energy conversion for enhanced solar evaporation. Journal of Materials Chemistry A, 2022, 10, 19612-19617.	5.2	21
30	Hierarchical Nanotubes Constructed by Co ₉ S ₈ /MoS ₂ Ultrathin Nanosheets Wrapped with Reduced Graphene Oxide for Advanced Lithium Storage. Chemistry - an Asian Journal, 2019, 14, 170-176.	1.7	20
31	Constructing electronic interconnected bimetallic selenide-filled porous carbon nanosheets for stable and highly efficient sodium-ion half/full batteries. Nanoscale, 2021, 13, 18578-18585.	2.8	20
32	Phosphorusâ€Dopingâ€Induced Surface Vacancies of 3D Na ₂ Ti ₃ O ₇ Nanowire Arrays Enabling Highâ€Rate and Longâ€Life Sodium Storage. Chemistry - A European Journal, 2019, 25, 14881-14889.	1.7	19
33	From vanadium slag to multi-cation-intercalated V ₂ O ₅ · <i>n</i> high-performance aqueous battery application. Journal of Materials Chemistry A, 2022, 10, 5479-5487.	5.2	19
34	Electronic modulation and structure engineered MoSe2 with multichannel paths as an advanced anode for sodium-ion half/full batteries. Science China Materials, 2022, 65, 2997-3006.	3.5	19
35	Metal–Oleate Complex-Derived Bimetallic Oxides Nanoparticles Encapsulated in 3D Graphene Networks as Anodes for Efficient Lithium Storage with Pseudocapacitance. Nano-Micro Letters, 2019, 11, 15.	14.4	18
36	Advanced water splitting electrocatalysts <i>via</i> the design of multicomponent heterostructures. Dalton Transactions, 2020, 49, 2761-2765.	1.6	17

#	Article	IF	Citations
37	Stable bismuth phosphosulfide nanoparticle encapsulation into hollow multi-channel carbon nanofibers toward high performance sodium storage. Journal of Materials Chemistry A, 2021, 9, 17336-17343.	5.2	16
38	Deep Insight into Electrochemical Kinetics of Cowpeaâ€Like Li ₃ VO ₄ @C Nanowires as Highâ€Rate Anode Materials for Lithiumâ€lon Batteries. ChemElectroChem, 2019, 6, 3920-3927.	1.7	14
39	Microspherical copper tetrathiovanadate with stable binding site as ultra-rate and extended longevity anode for sodium-ion half/full batteries. Chemical Engineering Journal, 2022, 446, 136772.	6.6	14
40	Twoâ€Dimensional Germanium Sulfide Nanosheets as an Ultraâ€Stable and High Capacity Anode for Lithium Ion Batteries. Chemistry - A European Journal, 2020, 26, 6554-6560.	1.7	13
41	å±,状é"é…,钾应用于é«~性èf½é«~æ,©é'离å电æ±. Science China Materials, 2022, 65, 646-652.	3.5	13
42	The ultrasonic-assisted growth of porous cobalt/nickel composite hydroxides as a super high-energy and stable cathode for aqueous zinc batteries. Journal of Materials Chemistry A, 2020, 8, 17741-17746.	5.2	12
43	Phase and interface engineering of nickel carbide nanobranches for efficient hydrogen oxidation catalysis. Journal of Materials Chemistry A, 2021, 9, 26323-26329.	5.2	12
44	Modulating the kinetics of CoSe ₂ yolkâ€"shell spheres <i>via</i> nitrogen doping with high pseudocapacitance toward ultra-high-rate capability and high-energy density sodium-ion half/full batteries. Materials Chemistry Frontiers, 2021, 5, 6873-6882.	3.2	10
45	Precursorâ€Based Synthesis of Porous Colloidal Particles towards Highly Efficient Catalysts. Chemistry - A European Journal, 2018, 24, 10280-10290.	1.7	9
46	Interfacial electron modulation of MoS ₂ /black phosphorus heterostructure toward high-rate and high-energy density half/full sodium-ion batteries. Materials Chemistry Frontiers, 2021, 5, 6639-6647.	3.2	9
47	Modulation of MoS ₂ interlayer dynamics by <i>in situ</i> N-doped carbon intercalation for high-rate sodium-ion half/full batteries. Nanoscale, 2021, 13, 18322-18331.	2.8	9
48	Interfacial Kinetics Regulation of MoS ₂ /Cu ₂ Se Nanosheets toward Superior Highâ∈Rate and Ultralongâ∈Lifespan Sodiumâ∈Ion Half/Full Batteries. ChemSusChem, 2021, 14, 5304-5310.	3.6	9
49	Kinetics modulation of titanium niobium oxide via hierarchical MXene coating for high-rate and high-energy density lithium-ion half/full batteries. Applied Surface Science, 2022, 576, 151890.	3.1	9
50	Topological transformation construction of a CoSe ₂ /N-doped carbon heterojunction with a three-dimensional porous structure for high-performance sodium-ion half/full batteries. Inorganic Chemistry Frontiers, 2022, 9, 3176-3186.	3.0	9
51	Ultrafast Lithiumâ€lon Batteries with Longâ€Term Cycling Performance Based on Titanium Carbide/3D Interconnected Porous Carbon. ChemNanoMat, 2022, 8, .	1.5	6
52	Pseudocapacitance-boosted ultrafast and stable Na-storage in NiTe ₂ coupled with N-doped carbon nanosheets for advanced sodium-ion half/full batteries. Dalton Transactions, 2021, 50, 17241-17248.	1.6	4
53	Boosting Pseudoâ€capacitive Sodium Storage in Ultrafine Titanium Dioxide by an Inâ€situ Porous Forming Strategy. ChemNanoMat, 2022, 8, .	1.5	4
54	Lithium-Ion Batteries: Nanostructured Li3 V2 (PO4)3 Cathodes (Small 21/2018). Small, 2018, 14, 1870095.	5.2	3

Hongbo Geng

#	Article	IF	CITATION
55	Enhancing Liâ€lon Affinity of Molybdenum Dioxide/Carbon Fabric to Achieve High Pseudocapacitance. Small, 2021, 17, e2104178.	5 . 2	3
56	The Efficient K Ion Storage of M ₂ P ₂ O ₇ /C (M=Fe, Co, Ni) Anode Derived from Organicâ€Inorganic Phosphate Precursors. Chemistry - A European Journal, 2021, 27, 9031-9037.	1.7	2
57	Phosphorus–carbon covalent bond induced kinetics modulation of vanadium diphosphide for roomand high-temperature sodium-ion batteries. New Journal of Chemistry, 2022, 46, 5948-5953.	1.4	2
58	Uniform Li Plating/Stripping within Ni Macropore Arrays Enabled by Regulated Electric Field Distribution for Ultra-Stable Li-Metal Anodes. IScience, 2020, 23, 101089.	1.9	1
59	Frontispiece: Precursor-Based Synthesis of Porous Colloidal Particles towards Highly Efficient Catalysts. Chemistry - A European Journal, 2018, 24, .	1.7	O