Franz X Kärtner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1834949/publications.pdf

Version: 2024-02-01

274 papers

10,075 citations

52 h-index 38368

276 all docs

276 docs citations

times ranked

276

6654 citing authors

g-index

#	Article	IF	CITATIONS
1	Sub-50  fs pulses at 2050  nm from a picosecond Ho:YLF laser using a two-stage Kagome-fiber-b compressor. Photonics Research, 2022, 10, 637.	pased	7
2	Cavity-dumped nanosecond Cr:LiSAF laser in the 985–1030Ânm region for versatile seeding of Yb-based amplifiers. Applied Physics B: Lasers and Optics, 2022, 128, 1.	1.1	5
3	Semiconductor saturable absorber mirror mode-locked Yb:YLF laser with pulses of 40 fs. Optics Letters, 2022, 47, 933.	1.7	9
4	Nonlinear Mach-Zehnder interferometer isolator. Optics Express, 2022, 30, 5973.	1.7	5
5	Recent progress in cryogenic Yb:YLF laser technology. , 2022, , .		1
6	Broadly tunable (993–1110  nm) Yb:YLF laser. Applied Optics, 2022, 61, 3702.	0.9	5
7	Parameter sensitivities in tilted-pulse-front based terahertz setups and their implications for high-energy terahertz source design and optimization. Optics Express, 2022, 30, 24186.	1.7	8
8	Efficient cryogenic Yb:YLF regenerative amplifier beyond 250W average power: pros and cons of different optical axes., 2022,,.		0
9	Detailed investigation of absorption, emission and gain in Yb:YLF in the 78–300 K range. Optical Materials Express, 2021, 11, 250.	1.6	21
10	Compact THz Photogun Transversely Pumped By Twin Single-Cycle Pulses. , 2021, , .		0
11	Quantum diffusion of microcavity solitons. Nature Physics, 2021, 17, 462-466.	6.5	30
12	Ultrafast electron diffractometer with Terahertz-driven pulse compression., 2021,,.		0
13	Bulk, cascaded pulse compression scheme and its application to spin emitter characterization. Applied Optics, 2021, 60, 912.	0.9	2
14	Temperature and doping dependence of fluorescence lifetime in Yb:YLF (role of impurities). Optical Materials, 2021, 112, 110792.	1.7	11
15	µJ-level multi-cycle terahertz generation in a periodically poled Rb:KTP crystal. Optics Letters, 2021, 46, 741.	1.7	9
16	Supercontinuum generation in silicon Bragg grating waveguide. Applied Physics Letters, 2021, 118, 071106.	1.5	7
17	Intrinsic amplitude-noise suppression in fiber lasers mode-locked with nonlinear amplifying loop mirrors. Optics Letters, 2021, 46, 1752.	1.7	23
18	Bandwidth extension and conversion efficiency improvements beyond phase matching limitations using cavity-enhanced OPCPA. Optics Express, 2021, 29, 9907.	1.7	3

#	Article	IF	CITATIONS
19	Comparative investigation of lasing and amplification performance in cryogenic Yb:YLF systems. Applied Physics B: Lasers and Optics, 2021, 127, 1.	1.1	10
20	High power (>500W) cryogenically cooled Yb:YLF cw-oscillator operating at 995â€nm and 1019â€nm using E//c axis for lasing. Optics Express, 2021, 29, 11674.	1.7	12
21	On-chip sampling of optical fields with attosecond resolution. Nature Photonics, 2021, 15, 456-460.	15.6	60
22	Amplification of 108ÂGHz repetition rate femtosecond laser pulses to 97ÂW average power by a fiber amplifier. OSA Continuum, 2021, 4, 1571.	1.8	7
23	Optically clocked switched-emitter-follower THA in a photonic SiGe BiCMOS technology. Optics Express, 2021, 29, 16312.	1.7	2
24	Efficient diode-pumped crygenic Yb:YLF laser with 500 W cw output power from a single rod., 2021,,.		0
25	Cryogenic Yb:YLF lasers mode-locked with saturable Bragg reflectors. , 2021, , .		1
26	Ultrafast electron diffraction powered with a Terahertz-driven pulse compressor., 2021,,.		0
27	Error analysis of contactless optical temperature probing methods for cryogenic Yb:YAG. Applied Physics B: Lasers and Optics, 2021, 127, 1.	1.1	3
28	Nonlinear fiber system for shot-noise limited intensity noise suppression and amplification. Optics Letters, 2021, 46, 3344.	1.7	8
29	Full 3D+1 modeling of tilted-pulse-front setups for single-cycle terahertz generation: reply. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 2590.	0.9	0
30	Highly efficient cryogenic Yb:YLF regenerative amplifier with 250  W average power. Optics Letters, 2021 46, 3865.	1.7	16
31	THz-Enhanced DC Ultrafast Electron Diffractometer. Ultrafast Science, 2021, 2021, .	5.8	15
32	Mode-locked Cr:LiSAF laser far off the gain peak: tunable sub-200-fs pulses near 1  µm. Applied Optics, 2021, 60, 9054.	0.9	6
33	PHz Electronic Device Design for Waveguide-Integrated Carrier-Envelope Phase Detection. , 2021, , .		O
34	Design and sensitivity analysis of a single sided pumped THz booster., 2021,,.		0
35	Interferometric spectral-shaping for multicycle THz generation using the Chirp & Delay technique. , 2021, , .		O
36	Attosecond-precision balanced linear-optics timing detector. Optics Express, 2021, 29, 38140.	1.7	5

#	Article	IF	Citations
37	Optically Enabled ADCs and Application to Optical Communications. IEEE Open Journal of the Solid-State Circuits Society, 2021, 1, 209-221.	2.0	8
38	Strong-field coherent control of isolated attosecond pulse generation. Nature Communications, 2021, 12, 6641.	5.8	24
39	All-polarization-maintaining divided pulse fiber oscillator mode-locked with the optical Kerr effect. Optics Letters, 2021, 46, 6083.	1.7	11
40	Light phase detection with on-chip petahertz electronic networks. Nature Communications, 2020, 11, 3407.	5.8	37
41	Sub-cycle millijoule-level parametric waveform synthesizer for attosecond science. Nature Photonics, 2020, 14, 629-635.	15.6	73
42	Raman Shifting Induced by Cascaded Quadratic Nonlinearities for Terahertz Generation. Laser and Photonics Reviews, 2020, 14, 2000109.	4.4	15
43	Silicon Photonics Optical Frequency Synthesizer. Laser and Photonics Reviews, 2020, 14, 1900449.	4.4	17
44	Cascaded Multicycle Terahertz-Driven Ultrafast Electron Acceleration and Manipulation. Physical Review X, 2020, 10, .	2.8	32
45	Novel method for the angular chirp compensation of passively CEP-stable few-cycle pulses. Optics Express, 2020, 28, 3171.	1.7	3
46	Full 3D + 1 modeling of tilted-pulse-front setups for single-cycle terahertz generation. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 1000.	0.9	13
47	Power and energy scaling of rod-type cryogenic Yb:YLF regenerative amplifiers. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 1865.	0.9	11
48	Towards high power longwave mid-IR frequency combs: power scalability of high repetition-rate difference-frequency generation. Optics Express, 2020, 28, 1369.	1.7	15
49	20-mJ, sub-ps pulses at up to 70 W average power from a cryogenic Yb:YLF regenerative amplifier. Optics Express, 2020, 28, 2466.	1.7	20
50	Towards CW modelocked laser on chip – a large mode area and NLI for stretched pulse mode locking. Optics Express, 2020, 28, 22562.	1.7	15
51	High-power passively mode-locked cryogenic Yb:YLF laser. Optics Letters, 2020, 45, 2050.	1.7	20
52	Femtosecond two-color source synchronized at 100-as-precision based on SPM-enabled spectral selection. Optics Letters, 2020, 45, 3410.	1.7	8
53	Comparison of different in situ optical temperature probing techniques for cryogenic Yb:YLF. Optical Materials Express, 2020, 10, 3403.	1.6	11
54	High-power pre-chirp managed amplification of circularly polarized pulses using high-dispersion chirped mirrors as a compressor. OSA Continuum, 2020, 3, 1988.	1.8	11

#	Article	IF	Citations
55	Eight-pass Yb:YLF cryogenic amplifier generating 305-mJ pulses. OSA Continuum, 2020, 3, 2722.	1.8	11
56	Nonlinear silicon photonics on CMOS-compatible tellurium oxide. Photonics Research, 2020, 8, 1904.	3.4	8
57	Terahertz Driven Electron and X-ray Sources. , 2020, , .		0
58	Terahertz accelerator based electron and x-ray sources. Terahertz Science & Technology, 2020, 13, 22-31.	0.5	2
59	Towards Integrated Attosecond Time-Domain Spectroscopy. , 2020, , .		0
60	Multi-cycle terahertz driven ultrafast electron manipulation in dielectrically-lined waveguides. , 2020, , .		0
61	70 W Yb:YLF Cryogenically-Cooled Regenerative Amplifier. , 2020, , .		0
62	Integrated Attosecond Time-Domain Spectroscopy. , 2020, , .		0
63	Efficient multi-cycle terahertz generation via difference frequency generation of a multiple-lines source., 2020,,.		O
64	Multi-cycle terahertz generation in a periodically poled Rb:KTP crystal. , 2020, , .		0
65	Alexandrite: an attractive thin-disk laser material alternative to Yb:YAG?. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 459.	0.9	7
66	Waveform Reproducibility from an OPA-based Parallel Synthesizer. , 2020, , .		1
67	High power cryogenic Yb:YLF regenerative amplifier. , 2020, , .		О
68	Multi-cycle THz driven electron acceleration and THz-energy recycling. , 2020, , .		1
69	Efficient multi-cycle terahertz generation based on a multi-lines source. , 2020, , .		0
70	Powering a Photogun using Single-Cycle Terahertz. , 2020, , .		0
71	Terahertz Driven Ultrafast Electron Sources. , 2020, , .		0
72	THz photogun transversely pumped by twin single-cycle pulses. , 2020, , .		1

#	Article	IF	CITATIONS
73	Vanishing carrier-envelope-phase-sensitive response in optical-field photoemission from plasmonic nanoantennas. Nature Physics, 2019, 15, 1128-1133.	6.5	27
74	Full 3D+1 calculations of terahertz generation in the tilted-pulse-front scheme., 2019,,.		0
75	Spectral phase control of interfering chirped pulses for high-energy narrowband terahertz generation. Nature Communications, 2019, 10, 2591.	5.8	96
76	Multimodal imaging platform for optical virtual skin biopsy enabled by a fiber-based two-color ultrafast laser source. Biomedical Optics Express, 2019, 10, 514.	1.5	22
77	Segmented Terahertz device for ultrashort electron acceleration, compression, focusing and streaking. EPJ Web of Conferences, 2019, 205, 01013.	0.1	0
78	Energy spread and emittance control in segmented high field Terahertz driven electron accelerators. , 2019, , .		0
79	Optical frequency synthesizer with an integrated erbium tunable laser. Light: Science and Applications, 2019, 8, 122.	7.7	25
80	Electro-Optic Sampling of Terahertz Pulses in Multilayer Crystals. , 2019, , .		2
81	Few-cycle, carrier–envelope-phase-stable laser pulses from a compact supercontinuum source. Journal of the Optical Society of America B: Optical Physics, 2019, 36, A93.	0.9	13
82	Integrated CMOS-compatible Q-switched mode-locked lasers at 1900nm with an on-chip artificial saturable absorber. Optics Express, 2019, 27, 3542.	1.7	41
83	Simultaneous generation and compression of broadband terahertz pulses in aperiodically poled crystals. Optics Express, 2019, 27, 6580.	1.7	7
84	Frequency-comb-based laser system producing stable optical beat pulses with picosecond durations suitable for high-precision multi-cycle terahertz-wave generation and rapid detection. Optics Express, 2019, 27, 11037.	1.7	13
85	Timing jitter reduction through relative intensity noise suppression in high-repetition-rate mode-locked fiber lasers. Optics Express, 2019, 27, 11273.	1.7	18
86	Terahertz-induced cascaded interactions between spectra offset by large frequencies. Optics Express, 2019, 27, 19254.	1.7	4
87	Analysis of terahertz generation by beamlet superposition. Optics Express, 2019, 27, 26547.	1.7	3
88	Supercontinuum generation in varying dispersion and birefringent silicon waveguide. Optics Express, 2019, 27, 31698.	1.7	50
89	Efficient, diode-pumped, high-power (>300W) cryogenic Yb:YLF laser with broad-tunability (995-10205) Tj ET	Qq1_1 0.7 	84314 rgBT
90	Femtosecond phase control in high-field terahertz-driven ultrafast electron sources. Optica, 2019, 6, 872.	4.8	48

#	Article	IF	CITATIONS
91	190-mJ cryogenically-cooled Yb:YLF amplifier system at 10197â€nm. OSA Continuum, 2019, 2, 3547.	1.8	13
92	Terahertz Acceleration., 2019,,.		0
93	Terahertz generation and acceleration. , 2019, , .		1
94	Fiber-amplifier-pumped, 1-MHz, 1-ÂμJ, 21-Âμm, femtosecond OPA with chirped-pulse DFG front-end. Optics Express, 2019, 27, 9144.	1.7	5
95	Temperature dependence of Alexandrite effective emission cross section and small signal gain over the 25-450 °C range. Optical Materials Express, 2019, 9, 3352.	1.6	10
96	On the effect of third-order dispersion on phase-matched terahertz generation via interfering chirped pulses. Optics Express, 2019, 27, 34769.	1.7	4
97	MITHRA 1.0: A full-wave simulation tool for free electron lasers. Computer Physics Communications, 2018, 228, 192-208.	3.0	4
98	Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm. Light: Science and Applications, 2018, 7, 17131-17131.	7.7	108
99	Laser system design for table-top X-ray light source. High Power Laser Science and Engineering, 2018, 6,	2.0	16
100	Segmented terahertz electron accelerator and manipulator (STEAM). Nature Photonics, 2018, 12, 336-342.	15.6	236
101	Deep Tissue Multiphoton Microscopy Based on Advanced Femtosecond Fiber Sources. , 2018, , .		0
102	Megawatt peak power tunable femtosecond source based on self-phase modulation enabled spectral selection. Optics Express, 2018, 26, 3684.	1.7	60
103	Pre-chirp managed, core-pumped nonlinear PM fiber amplifier delivering sub-100-fs and high energy (10) Tj ETQq1	1 0.7843 1.7	314 rgBT /O\
104	Cascaded interactions mediated by terahertz radiation. Optics Express, 2018, 26, 12536.	1.7	17
105	CEP dependence of signal and idler upon pump-seed synchronization in optical parametric amplifiers. Optics Letters, 2018, 43, 178.	1.7	10
106	Energy scalable, offset-free ultrafast mid-infrared source harnessing self-phase-modulation-enabled spectral selection. Optics Letters, 2018, 43, 2953.	1.7	20
107	87-W 1018-nm Yb-fiber ultrafast seeding source for cryogenic Yb: yttrium lithium fluoride amplifier. Optics Letters, 2018, 43, 1686.	1.7	18
108	Tunable, Ultrafast Fiber-Laser between 1.15 \hat{l} 4m and 1.35 \hat{l} 4m for Harmonic Generation Microscopy in Human Skin. IEEE Journal of Selected Topics in Quantum Electronics, 2018, , 1-1.	1.9	2

#	Article	IF	CITATIONS
109	Synchronous multi-color laser network with daily sub-femtosecond timing drift. Scientific Reports, 2018, 8, 11948.	1.6	8
110	Integrated rare-Earth doped mode-locked lasers on a CMOS platform. , 2018, , .		5
111	Robust 700 MHz mode-locked Yb:fiber laser with a biased nonlinear amplifying loop mirror. Optics Express, 2018, 26, 26003.	1.7	52
112	Ultra-precise timing and synchronization for large-scale scientific instruments. Optica, 2018, 5, 1564.	4.8	46
113	Low-Drift Optoelectronic Oscillator Based on a Phase Modulator in a Sagnac Loop. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 2617-2624.	2.9	31
114	Cascaded second-order processes for the efficient generation of narrowband terahertz radiation. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 044002.	0.6	13
115	Attosecond precision multi-kilometer laser-microwave network. Light: Science and Applications, 2017, 6, e16187-e16187.	7.7	64
116	Tunable Low-Jitter Low-Drift Spurious-Free Transposed-Frequency Optoelectronic Oscillator. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 2625-2635.	2.9	19
117	Generation and multi-octave shaping of mid-infrared intense single-cycle pulses. Nature Photonics, 2017, 11, 222-226.	15.6	97
118	Optical-field-controlled photoemission from plasmonic nanoparticles. Nature Physics, 2017, 13, 335-339.	6.5	129
118	Optical-field-controlled photoemission from plasmonic nanoparticles. Nature Physics, 2017, 13, 335-339. Mapping Photoemission and Hot-Electron Emission from Plasmonic Nanoantennas. Nano Letters, 2017, 17, 6069-6076.	6.5 4.5	129 57
	Mapping Photoemission and Hot-Electron Emission from Plasmonic Nanoantennas. Nano Letters, 2017,		
119	Mapping Photoemission and Hot-Electron Emission from Plasmonic Nanoantennas. Nano Letters, 2017, 17, 6069-6076.	4.5	57
119	Mapping Photoemission and Hot-Electron Emission from Plasmonic Nanoantennas. Nano Letters, 2017, 17, 6069-6076. Laser-Induced Linear-Field Particle Acceleration in Free Space. Scientific Reports, 2017, 7, 11159. High-energy mid-infrared sub-cycle pulse synthesis from a parametric amplifier. Nature	4.5 1.6	57 39
119 120 121	Mapping Photoemission and Hot-Electron Emission from Plasmonic Nanoantennas. Nano Letters, 2017, 17, 6069-6076. Laser-Induced Linear-Field Particle Acceleration in Free Space. Scientific Reports, 2017, 7, 11159. High-energy mid-infrared sub-cycle pulse synthesis from a parametric amplifier. Nature Communications, 2017, 8, 141.	4.5 1.6	57 39 125
119 120 121 122	Mapping Photoemission and Hot-Electron Emission from Plasmonic Nanoantennas. Nano Letters, 2017, 17, 6069-6076. Laser-Induced Linear-Field Particle Acceleration in Free Space. Scientific Reports, 2017, 7, 11159. High-energy mid-infrared sub-cycle pulse synthesis from a parametric amplifier. Nature Communications, 2017, 8, 141. Thulium-doped distributed feedback and distributed Bragg reflector lasers on silicon chips., 2017, Breaking the Femtosecond Barrier in Multi-Kilometer Timing Synchronization Systems. IEEE Journal of	4.5 1.6 5.8	57 39 125 0
119 120 121 122	Mapping Photoemission and Hot-Electron Emission from Plasmonic Nanoantennas. Nano Letters, 2017, 17, 6069-6076. Laser-Induced Linear-Field Particle Acceleration in Free Space. Scientific Reports, 2017, 7, 11159. High-energy mid-infrared sub-cycle pulse synthesis from a parametric amplifier. Nature Communications, 2017, 8, 141. Thulium-doped distributed feedback and distributed Bragg reflector lasers on silicon chips., 2017,,. Breaking the Femtosecond Barrier in Multi-Kilometer Timing Synchronization Systems. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 97-108.	4.5 1.6 5.8	57 39 125 0

#	Article	IF	Citations
127	THz linear acceleration for compact electron and X-ray sources. , 2017, , .		O
128	Ultra-low phase noise synchronization of microwave sources with fiber-optic timing system. , 2017, , .		0
129	Energetic ultrafast fiber laser sources tunable in 1030–1215 nm for deep tissue multi-photon microscopy. Optics Express, 2017, 25, 6822.	1.7	71
130	THz-driven electron streak camera based on a multilayer structure. , 2017, , .		0
131	Narrowband terahertz generation with chirped-and-delayed laser pulses in periodically poled lithium niobate. Optics Letters, 2017, 42, 2118.	1.7	55
132	THz cavities and injectors for compact electron acceleration using laser-driven THz sources. Physical Review Accelerators and Beams, 2017, 20, .	0.6	16
133	100-nm tunable femtosecond Cr:LiSAF laser mode locked with a broadband saturable Bragg reflector. Applied Optics, 2017, 56, 3812.	2.1	14
134	Self-phase modulation enabled, wavelength-tunable ultrafast fiber laser sources: an energy scalable approach. Optics Express, 2016, 24, 15328.	1.7	76
135	40-µJ passively CEP-stable seed source for ytterbium-based high-energy optical waveform synthesizers. Optics Express, 2016, 24, 25169.	1.7	22
136	Pulse sequences for efficient multi-cycle terahertz generation in periodically poled lithium niobate. Optics Express, 2016, 24, 25582.	1.7	73
137	Terahertz-driven, all-optical electron gun. Optica, 2016, 3, 1209.	4.8	78
138	THz-induced Kerr effect in polar liquids. , 2016, , .		0
139	Water-window soft x-ray high-harmonic generation up to the nitrogen K-edge driven by a kHz, 2.1 <i>14/4</i> m OPCPA source. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 155601.	0.6	54
140	Demonstration of an ultracompact THz-driven electron gun. , 2016, , .		0
141	Highly efficient generation of strong-field 0.1-THz radiation. , 2016, , .		0
142	Laser driven THz accelerators. , 2016, , .		0
143	High power broadband terahertz pulse generation using chirped aperiodically poled structures. , 2016, , .		0
144	Cascaded parametric amplification for highly efficient terahertz generation. Optics Letters, 2016, 41, 3806.	1.7	48

#	Article	IF	Citations
145	Kagome-fiber-based pulse compression of mid-infrared picosecond pulses from a Ho:YLF amplifier. Optica, 2016, 3, 816.	4.8	29
146	Terahertz driven linear accelerators and photon sources. , 2016, , .		1
147	Volkov transform generalized projection algorithm for attosecond pulse characterization. New Journal of Physics, 2016, 18, 073009.	1.2	55
148	Optical-to-microwave synchronization with sub-femtosecond daily drift., 2016,,.		2
149	250  W average power, 100  kHz repetition rate cryogenic Yb:YAG amplifier for OPCPA pumpin Letters, 2016, 41, 492.	g _{1.7} ptics	34
150	Intracavity gain shaping in millijoule-level, high gain Ho:YLF regenerative amplifiers. Optics Letters, 2016, 41, 1114.	1.7	28
151	AXSIS: Exploring the frontiers in attosecond X-ray science, imaging and spectroscopy. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 829, 24-29.	0.7	80
152	Direct longitudinal laser acceleration of electrons in free space. Physical Review Accelerators and Beams, 2016, 19, .	0.6	73
153	Short electron bunch generation using single-cycle ultrafast electron guns. Physical Review Accelerators and Beams, 2016, 19, .	0.6	58
154	Toward a terahertz-driven electron gun. Scientific Reports, 2015, 5, 14899.	1.6	40
155	Temperature dependent refractive index and absorption coefficient of congruent lithium niobate crystals in the terahertz range. Optics Express, 2015, 23, 29729.	1.7	69
156	Highu-energy optical waveform synthesis. , 2015, , .		0
157	Efficient narrowband terahertz generation in cryogenically cooled periodically poled lithium niobate. Optics Letters, 2015, 40, 5762.	1.7	56
158	Efficient generation of terahertz radiation at 800 nm wavelength., 2015,,.		0
159	Coherent pulse synthesis: towards sub-cycle optical waveforms. Laser and Photonics Reviews, 2015, 9, 129-171.	4.4	179
160	Toward Waveform Nonlinear Optics Using Multimillijoule Sub-Cycle Waveform Synthesizers. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 1-12.	1.9	61
161	Theory of terahertz generation by optical rectification using tilted-pulse-fronts. Optics Express, 2015, 23, 5253.	1.7	58
162	High-energy, kHz, picosecond hybrid Yb-doped chirped-pulse amplifier. Optics Express, 2015, 23, 10132.	1.7	31

#	Article	IF	Citations
163	Cryogenic Yb:YAG composite-thin-disk for high energy and average power amplifiers. Optics Letters, 2015, 40, 2610.	1.7	57
164	Terahertz-driven linear electron acceleration. Nature Communications, 2015, 6, 8486.	5.8	461
165	Pre-chirp managed nonlinear amplification in fibers delivering 100  W, 60  fs pulses. Optics Let 40, 151.	ters, 2015 1.7	' 79
166	Highly efficient terahertz pulse generation by optical rectification in stoichiometric and cryo-cooled congruent lithium niobate. Journal of Modern Optics, 2015, 62, 1486-1493.	0.6	60
167	Gain-Matched Output Couplers for Efficient Kerr-Lens Mode-Locking of Low-Cost and High-Peak Power Cr:LiSAF Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 94-105.	1.9	12
168	High-energy kHz Yb:KYW dual-crystal regenerative amplifier. Optics Express, 2014, 22, 24752.	1.7	42
169	One-femtosecond, long-term stable remote laser synchronization over a 35-km fiber link. Optics Express, 2014, 22, 14904.	1.7	40
170	Remote Laser-Microwave Synchronization Over Kilometer-Scale Fiber Link With Few-Femtosecond Drift. Journal of Lightwave Technology, 2014, 32, 3742-3748.	2.7	9
171	Pitch scaling of ultrafast, optically-triggered silicon field emitter arrays. , 2014, , .		0
172	Nanostructured Ultrafast Silicon-Tip Optical Field-Emitter Arrays. Nano Letters, 2014, 14, 5035-5043.	4. 5	67
173	Long-term stable remote laser synchronization over a 3.5-km fiber link with one-femtosecond residual timing jitter. , 2014 , , .		0
174	High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate. Optics Letters, 2013, 38, 796.	1.7	245
175	Frequency comb based on a narrowband Yb-fiber oscillator: pre-chirp management for self-referenced carrier envelope offset frequency stabilization. Optics Express, 2013, 21, 4531.	1.7	18
176	Compact electron acceleration and bunch compression in THz waveguides. Optics Express, 2013, 21, 9792.	1.7	98
177	Long-term stable, sub-femtosecond timing distribution via a 12-km polarization-maintaining fiber link: approaching 10° 21 link stability. Optics Express, 2013, 21, 19982.	1.7	34
178	Performance scaling of high-power picosecond cryogenically cooled rod-type Yb:YAG multipass amplification. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 2798.	0.9	9
179	Strongâ€field photoemission from silicon field emitter arrays. Annalen Der Physik, 2013, 525, 144-150.	0.9	34
180	Recombination-amplitude calculations of noble gases, in both length and acceleration forms, beyond the strong-field approximation. Physical Review A, 2013, 88, .	1.0	10

#	Article	IF	CITATIONS
181	Towards a large-scale, optical timing distribution system with sub-femtosecond residual timing jitter. , 2013, , .		1
182	Broadband noncollinear optical parametric amplification without angularly dispersed idler. Optics Letters, 2012, 37, 2796.	1.7	34
183	Photonic ADC: overcoming the bottleneck of electronic jitter. Optics Express, 2012, 20, 4454.	1.7	447
184	Optimization of femtosecond Yb-doped fiber amplifiers for high-quality pulse compression. Optics Express, 2012, 20, 28672.	1.7	58
185	Attosecond photonics. , 2012, , .		0
186	High-order harmonic generation in Xe, Kr, and Ar driven by a 2.1- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>$\hat{1}/4$</mml:mi></mml:math> m source: High-order harmonic spectroscopy under macroscopic effects. Physical Review A, 2012, 86, .	1.0	17
187	Optical flywheels with attosecond jitter. Nature Photonics, 2012, 6, 97-100.	15.6	139
188	Characterization of timing jitter in ultrafast fiber and Ti:S lasers., 2011,,.		0
189	Electronic-photonic integrated circuits in silicon-on-insulator platforms., 2011,,.		3
190	Accurate photonic analog-to-digital conversion. , 2011, , .		1
191	Femtosecond tuning of Cr:colquiriite lasers with AlGaAs-based saturable Bragg reflectors. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 986.	0.9	24
192	Femtosecond Cr:LiSAF and Cr:LiCAF lasers pumped by tapered diode lasers. Optics Express, 2011, 19, 20444.	1.7	37
193	Demonstration of a cavity-enhanced optical parametric chirped-pulse amplification system. Optics Letters, 2011, 36, 1206.	1.7	8
194	High-energy pulse synthesis with sub-cycle waveform control for strong-field physics. Nature Photonics, 2011, 5, 475-479.	15.6	308
195	Superfluorescence dynamics of OPCPAs in the saturation regime. , 2011, , .		0
196	A threshold for laser-driven linear particle acceleration in unbounded vacuum. Applied Physics Letters, 2011, 99, 211101.	1.5	7
197	Spatial and temporal modeling of few-cycle Ti:Sapphire lasers. , 2011, , .		0
198	Interplay of mulitphoton and tunneling ionization in short-wavelength-driven high-order harmonic generation. Physical Review A, 2011, 84, .	1.0	11

#	Article	IF	Citations
199	Carrier-envelope phase stabilization of a soliton-effect compressed sub-two-cycle pulse source. , 2011, , .		0
200	Ultrafast Rabi flopping and coherent pulse propagation in a quantum cascade laser. Nature Photonics, 2010, 4, 706-710.	15.6	58
201	Femtosecond lasers for attosecond timing control. , 2010, , .		1
202	Femtosecond precision timing distribution for accelerators and Light Sources. , 2010, , .		2
203	Chirally-coupled-core Yb-fiber laser delivering 80-fs pulses with diffraction-limited beam quality warranted by a high-dispersion mirror based compressor. Optics Express, 2010, 18, 24699.	1.7	33
204	Performance scaling via passive pulse shaping in cavity-enhanced optical parametric chirped-pulse amplification. Optics Letters, 2010, 35, 1929.	1.7	10
205	Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation. Optics Letters, 2010, 35, 2361.	1.7	106
206	Phase distortion ratio: alternative to group delay dispersion for analysis and optimization of dispersion compensating optics. Optics Letters, 2010, 35, 2469.	1.7	5
207	Space-time focusing of phase-stabilized nanojoule-level 2.5-cycle pulses to peak intensities ≫3×10 ¹³ W/cm ² at 80 MHz., 2009,,.		1
208	Experimental demonstration of sub-two-cycle soliton-effect pulse compression in a photonic crystal fiber., 2009, , .		0
209	Dynamical systems in nanophotonics: From energy efficient modulators to light forces and optomechanics. , 2009, , .		0
210	Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression. Optics Letters, 2009, 34, 1639.	1.7	96
211	Comparative investigation of diode pumping for continuous-wave and mode-locked Cr^3+:LiCAF lasers. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 64.	0.9	24
212	Temporal optimization of ultrabroadband high-energy OPCPA. Optics Express, 2009, 17, 5540.	1.7	77
213	Integrated Low-Jitter 400-MHz Femtosecond Waveguide Laser. IEEE Photonics Technology Letters, 2009, 21, 763-765.	1.3	37
214	ASTRO-COMB: REVOLUTIONIZING PRECISION SPECTROSCOPY IN ASTROPHYSICS., 2009, , .		0
215	Drift-free femtosecond timing synchronization of remote optical and microwave sources. Nature Photonics, 2008, 2, 733-736.	15.6	349
216	Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning. Physical Review A, 2008, 77, .	1.0	184

#	Article	IF	CITATIONS
217	Generation of 287 W, 55 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system. Optics Letters, 2008, 33, 2473.	1.7	60
218	Optical and microwave timing transfer and synchronization using optical pulse trains. , 2008, , .		1
219	Low-drift and low-jitter microwave signal synthesis from mode-locked lasers. , 2008, , .		1
220	Integrated, low-jitter, 400 MHz femtosecond waveguide laser., 2008,,.		3
221	2GHz octave-spanning Ti:sapphire Laser with non-intrusive carrier-envelope phase stabilization. , 2008, , .		0
222	Astro-comb: revolutionizing precision spectroscopy in astrophysics. Proceedings of the International Astronomical Union, 2008, 4, 499-501.	0.0	0
223	Attosecond-resolution timing jitter characterization of free-running mode-locked lasers. , 2008, , .		3
224	Adaptive error compensation for photonic analog-to-digital converters. , 2008, , .		0
225	Experimental demonstration of loop-coupled microring resonators for optimally sharp optical filters. , 2008, , .		7
226	Few-Cycle femtosecond waveform synthesizer. , 2008, , .		0
227	High-power, diode-pumped modelocked Cr ³⁺ :LiCAF laser. , 2008, , .		0
228	Microwave signal regeneration from mode-locked lasers with 1.9×10 ^{−19} stability., 2008,,.		0
229	Nonlinear phase response of a saturable Bragg reflector for modulation depth control. , 2008, , .		0
230	Femtosecond resonant pulse propagation in quantum cascade lasers: Evidence of coherent effects. , 2008, , .		0
231	Self-referenced f <inf>CEO</inf> stabilization of a low noise femtosecond fiber oscillator. , 2008, , .		1
232	Sub-femtosecond timing distribution of an ultrafast optical pulse train over multiple fiber links., 2008,,.		1
233	Demonstration of a photonic analog-to-digital converter scalable to 40 GS/s with 8-bit resolution. , 2008, , .		1
234	2-micron optical parametric chirped pulse amplifier for long-wavelength driven high harmonic generation., 2008,,.		0

#	Article	IF	Citations
235	Low timing-jitter high repetition-rate femtosecond pulse trains via locking to external fabry-perot cavities. , 2008 , , .		0
236	Octave-spanning Optical Waveform Synthesizer for Coherent Control Experiments. , 2007, , .		0
237	Long-Term Stable Microwave Signal Extraction from Mode-Locked Lasers. , 2007, , .		O
238	High Directivity, Vertical Fiber-to-Chip Coupler with Anisotropically Radiating Grating Teeth., 2007,,.		12
239	High Repetition Rate, Low Jitter, Fundamentally Mode-locked Soliton Er-fiber Laser. , 2007, , .		5
240	Strong-Confinement Microring Resonator Photonic Circuits. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	3
241	Large Scale, Femtosecond Timing Distribution. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	0
242	Attosecond-resolution timing jitter characterization of free-running mode-locked lasers. Optics Letters, 2007, 32, 3519.	1.7	132
243	Efficient optimization of multilayer coatings for ultrafast optics using analytic gradients of dispersion. Applied Optics, 2007, 46, 2656.	2.1	24
244	Coherent instabilities in a semiconductor laser with fast gain recovery. Physical Review A, 2007, 75, .	1.0	117
245	Octave Spanning 1 GHz Ti:sapphire Oscillator For HeNe CH4-based Frequency Combs and Clocks. , 2007, ,		3
246	Maximizing the Thermo-Optic Tuning Range of Silicon Photonic Structures. , 2007, , .		74
247	Low-Loss Bloch Waves in Open Structures and Highly Compact, Efficient Si Waveguide-Crossing Arrays. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	13
248	Polarization-transparent microphotonic devices in the strong confinement limit. Nature Photonics, 2007, 1, 57-60.	15.6	492
249	An Optical-Electrical Sub-Sampling Receiver Employing Continuous-Time ΔΣ Modulation. , 2006, , .		2
250	Cavity-enhanced optical parametric chirped-pulse amplification. , 2006, , .		0
251	Cavity-enhanced optical parametric chirped-pulse amplification. Optics Letters, 2006, 31, 637.	1.7	13
252	Two-dimensional spectral shearing interferometry for few-cycle pulse characterization. Optics Letters, 2006, 31, 2063.	1.7	126

#	Article	IF	CITATIONS
253	Carrier-envelope phase dynamics and noise analysis in octave-spanning Ti:sapphire lasers. Optics Express, 2006, 14, 2497.	1.7	47
254	Accurate resonant frequency spacing of microring filters without postfabrication trimming. Journal of Vacuum Science & Technology B, 2006, 24, 3244.	1.3	18
255	Global design rules for silicon microphotonic waveguides: Sensitivity, polarization and resonance tunability. , 2006, , .		5
256	High-index-contrast microphotonics, from concept to implementation. , 2006, , .		0
257	Quantitatively-reliable analytic approximation for the single atom HHG spectrum. , 2006, , .		0
258	Control of carrier-envelope phase by a composite glass plate. , 2006, , .		0
259	Carrier-envelope phase dynamics and noise analysis in octave-spanning Ti:sapphire lasers. , 2006, , .		0
260	Long-distance optical synchronization system for X-ray free electron lasers. , 2006, , .		0
261	Temporal superresolution for sub-two cycle pulses. , 2006, , .		0
262	Soliton self-frequency shift from 1.03 & $\#$ x03BC;m to 1.55 & $\#$ x03BC;m and related timing jitter., 2006, , .		0
263	Role of the Coulomb singularity in high-order harmonic generation. Physical Review A, 2005, 72, .	1.0	41
264	Multistage high-order microring-resonator filters with relaxed tolerances for high through-port extinction. , 2005, , .		8
265	Camouflage third-harmonic generation in the nonperturbative few-cycle regime. Physica Status Solidi (B): Basic Research, 2003, 238, 561-567.	0.7	8
266	Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser. Optics Letters, 2001, 26, 373.	1.7	404
267	Ultrahigh-resolution ophthalmic optical coherence tomography. Nature Medicine, 2001, 7, 502-507.	15.2	954
268	Turbulence in Mode-Locked Lasers. Physical Review Letters, 1999, 82, 4428-4431.	2.9	48
269	Two-photon absorption in semiconductor saturable absorber mirrors. Applied Physics Letters, 1999, 74, 3927-3929.	1.5	89
270	High fluence ultrafast dynamics of semiconductor saturable absorber mirrors. Applied Physics Letters, 1999, 75, 3841-3843.	1.5	24

#	Article	IF	CITATIONS
271	Design and fabrication of double-chirped mirrors. Optics Letters, 1997, 22, 831.	1.7	258
272	Experimental verification of soliton mode locking using only a slow saturable absorber. Optics Letters, 1995, 20, 1892.	1.7	69
273	10-Hz, 636-ps, 1064-nm, all polarization-maintaining fiber front-end based on ultrafast optical fiber pulse chopping. Optics Express, 0, , .	1.7	0
274	Advantages of YLF host over YAG in power scaling at cryogenic temperatures: direct comparison of Yb-doped systems. Optical Materials Express, 0, , .	1.6	6