Weiqing Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1834675/publications.pdf Version: 2024-02-01

	19657	24258
13,535	61	110
citations	h-index	g-index
229	229	9905
docs citations	times ranked	citing authors
	13,535 citations 229 docs citations	13,535 citations 61 h-index 229 docs citations 229 times ranked

#	Article	IF	CITATIONS
1	Harmonicâ€Resonatorâ€Based Triboelectric Nanogenerator as a Sustainable Power Source and a Selfâ€Powered Active Vibration Sensor. Advanced Materials, 2013, 25, 6094-6099.	21.0	672
2	Harvesting Water Wave Energy by Asymmetric Screening of Electrostatic Charges on a Nanostructured Hydrophobic Thin-Film Surface. ACS Nano, 2014, 8, 6031-6037.	14.6	471
3	Harvesting Energy from the Natural Vibration of Human Walking. ACS Nano, 2013, 7, 11317-11324.	14.6	448
4	Self-Powered, Ultrasensitive, Flexible Tactile Sensors Based on Contact Electrification. Nano Letters, 2014, 14, 3208-3213.	9.1	405
5	Triboelectrification-Based Organic Film Nanogenerator for Acoustic Energy Harvesting and Self-Powered Active Acoustic Sensing. ACS Nano, 2014, 8, 2649-2657.	14.6	390
6	Lawn Structured Triboelectric Nanogenerators for Scavenging Sweeping Wind Energy on Rooftops. Advanced Materials, 2016, 28, 1650-1656.	21.0	334
7	Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures. Nano Energy, 2019, 55, 516-525.	16.0	331
8	Self-Powered Acceleration Sensor Based on Liquid Metal Triboelectric Nanogenerator for Vibration Monitoring. ACS Nano, 2017, 11, 7440-7446.	14.6	293
9	Broadband Vibrational Energy Harvesting Based on a Triboelectric Nanogenerator. Advanced Energy Materials, 2014, 4, 1301322.	19.5	280
10	Rotating-Disk-Based Hybridized Electromagnetic–Triboelectric Nanogenerator for Sustainably Powering Wireless Traffic Volume Sensors. ACS Nano, 2016, 10, 6241-6247.	14.6	277
11	3D Stack Integrated Triboelectric Nanogenerator for Harvesting Vibration Energy. Advanced Functional Materials, 2014, 24, 4090-4096.	14.9	263
12	Cylindrical Rotating Triboelectric Nanogenerator. ACS Nano, 2013, 7, 6361-6366.	14.6	249
13	Microchannelâ€Confined MXene Based Flexible Piezoresistive Multifunctional Microâ€Force Sensor. Advanced Functional Materials, 2020, 30, 1909603.	14.9	248
14	Nitrogen, oxygen and sulfur co-doped hierarchical porous carbons toward high-performance supercapacitors by direct pyrolysis of kraft lignin. Carbon, 2019, 149, 105-116.	10.3	241
15	Personalized Keystroke Dynamics for Self-Powered Human–Machine Interfacing. ACS Nano, 2015, 9, 105-116.	14.6	239
16	Manipulating Relative Permittivity for High-Performance Wearable Triboelectric Nanogenerators. Nano Letters, 2020, 20, 6404-6411.	9.1	231
17	Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator. Nano Research, 2013, 6, 880-886.	10.4	209
18	Hierarchically structured PVDF/ZnO core-shell nanofibers for self-powered physiological monitoring electronics. Nano Energy, 2020, 72, 104706.	16.0	207

#	Article	IF	CITATIONS
19	Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training. Nano Energy, 2019, 59, 574-581.	16.0	204
20	Unraveling and Regulating Self-Discharge Behavior of Ti ₃ C ₂ T _{<i>x</i>} MXene-Based Supercapacitors. ACS Nano, 2020, 14, 4916-4924.	14.6	203
21	Harvesting Broadband Kinetic Impact Energy from Mechanical Triggering/Vibration and Water Waves. ACS Nano, 2014, 8, 7405-7412.	14.6	180
22	Self-Powered Safety Helmet Based on Hybridized Nanogenerator for Emergency. ACS Nano, 2016, 10, 7874-7881.	14.6	179
23	A linear-to-rotary hybrid nanogenerator for high-performance wearable biomechanical energy harvesting. Nano Energy, 2020, 67, 104235.	16.0	172
24	Hierarchically Microstructure-Bioinspired Flexible Piezoresistive Bioelectronics. ACS Nano, 2021, 15, 11555-11563.	14.6	163
25	Triboelectrification Based Motion Sensor for Human-Machine Interfacing. ACS Applied Materials & Interfaces, 2014, 6, 7479-7484.	8.0	162
26	Self-powered wireless smart sensor based on maglev porous nanogenerator for train monitoring system. Nano Energy, 2017, 38, 185-192.	16.0	152
27	Polarization-free high-crystallization β-PVDF piezoelectric nanogenerator toward self-powered 3D acceleration sensor. Nano Energy, 2018, 50, 632-638.	16.0	150
28	Piezoelectric nanogenerators for personalized healthcare. Chemical Society Reviews, 2022, 51, 3380-3435.	38.1	145
29	Allâ€Sprayedâ€Processable, Largeâ€Area, and Flexible Perovskite/MXeneâ€Based Photodetector Arrays for Photocommunication. Advanced Optical Materials, 2019, 7, 1801521.	7.3	144
30	Triboelectric Sensor for Self-Powered Tracking of Object Motion inside Tubing. ACS Nano, 2014, 8, 3843-3850.	14.6	142
31	Biological Nanofibrous Generator for Electricity Harvest from Moist Air Flow. Advanced Functional Materials, 2019, 29, 1901798.	14.9	137
32	Epidermis-Inspired Ultrathin 3D Cellular Sensor Array for Self-Powered Biomedical Monitoring. ACS Applied Materials & Interfaces, 2018, 10, 41070-41075.	8.0	136
33	Nanogenerator as new energy technology for self-powered intelligent transportation system. Nano Energy, 2019, 66, 104086.	16.0	130
34	Cellulose II Aerogelâ€Based Triboelectric Nanogenerator. Advanced Functional Materials, 2020, 30, 2001763.	14.9	123
35	High power supercapacitors based on hierarchically porous sheet-like nanocarbons with ionic liquid electrolytes. Chemical Engineering Journal, 2017, 322, 73-81.	12.7	119
36	One-step synthesis of hierarchically porous carbons for high-performance electric double layer supercapacitors. Journal of Power Sources, 2016, 315, 120-126.	7.8	118

#	Article	IF	CITATIONS
37	All-in-one 3D acceleration sensor based on coded liquid–metal triboelectric nanogenerator for vehicle restraint system. Materials Today, 2021, 43, 37-44.	14.2	113
38	Synthesis of self-assembly 3D porous Ni(OH)2 with high capacitance for hybrid supercapacitors. Electrochimica Acta, 2018, 269, 102-110.	5.2	99
39	Facile synthesis of ultrafine cobalt oxide nanoparticles for high-performance supercapacitors. Journal of Colloid and Interface Science, 2017, 505, 796-804.	9.4	97
40	Multifunctional triboelectric nanogenerator based on porous micro-nickel foam to harvest mechanical energy. Nano Energy, 2015, 16, 516-523.	16.0	96
41	High-voltage asymmetric MXene-based on-chip micro-supercapacitors. Nano Energy, 2020, 74, 104928.	16.0	96
42	Establishing highly-efficient surface faradaic reaction in flower-like NiCo2O4 nano-/micro-structures for next-generation supercapacitors. Electrochimica Acta, 2019, 307, 302-309.	5.2	95
43	Extraordinary Areal and Volumetric Performance of Flexible Solidâ€State Microâ€Supercapacitors Based on Highly Conductive Freestanding Ti ₃ C ₂ T <i>_x</i> Films. Advanced Electronic Materials, 2018, 4, 1800179.	5.1	93
44	Extremely low self-discharge solid-state supercapacitors <i>via</i> the confinement effect of ion transfer. Journal of Materials Chemistry A, 2019, 7, 8633-8640.	10.3	88
45	Asymmetric ionic aerogel of biologic nanofibrils for harvesting electricity from moisture. Nano Energy, 2020, 71, 104610.	16.0	84
46	Highly microporous carbon with nitrogen-doping derived from natural biowaste for high-performance flexible solid-state supercapacitor. Journal of Colloid and Interface Science, 2019, 548, 322-332.	9.4	80
47	Smart network node based on hybrid nanogenerator for self-powered multifunctional sensing. Nano Energy, 2017, 33, 418-426.	16.0	79
48	Massively manufactured paper-based all-solid-state flexible micro-supercapacitors with sprayable MXene conductive inks. Journal of Power Sources, 2019, 415, 1-7.	7.8	79
49	Hierarchically Divacancy Defect Building Dualâ€Activated Porous Carbon Fibers for Highâ€Performance Energy‣torage Devices. Advanced Functional Materials, 2020, 30, 2002580.	14.9	79
50	Scalable, and low-cost treating-cutting-coating manufacture platform for MXene-based on-chip micro-supercapacitors. Nano Energy, 2020, 69, 104431.	16.0	78
51	Strong Lewis Acid–Base and Weak Hydrogen Bond Synergistically Enhancing Ionic Conductivity of Poly(ethylene oxide)@SiO ₂ Electrolytes for a High Rate Capability Li-Metal Battery. ACS Applied Materials & Interfaces, 2020, 12, 10341-10349.	8.0	77
52	A flexible field-limited ordered ZnO nanorod-based self-powered tactile sensor array for electronic skin. Nanoscale, 2016, 8, 16302-16306.	5.6	76
53	Self-Powered, Wireless, Remote Meteorologic Monitoring Based on Triboelectric Nanogenerator Operated by Scavenging Wind Energy. ACS Applied Materials & Interfaces, 2016, 8, 32649-32654.	8.0	76
54	An ultrathin robust polymer membrane for wearable solid-state electrochemical energy storage. Nano Energy, 2020, 76, 105179.	16.0	70

#	Article	IF	CITATIONS
55	Electrochemically building three-dimensional supramolecular polymer hydrogel for flexible solid-state micro-supercapacitors. Electrochimica Acta, 2019, 301, 136-144.	5.2	69
56	Simultaneously Harvesting Thermal and Mechanical Energies based on Flexible Hybrid Nanogenerator for Self-Powered Cathodic Protection. ACS Applied Materials & (2015, 2015, 7, 28142-28147).	8.0	68
57	Self-assembly gridding α-MoO3 nanobelts for highly toxic H2S gas sensors. Sensors and Actuators B: Chemical, 2016, 237, 350-357.	7.8	68
58	Ultrafast Thermodynamic Control for Stable and Efficient Mixed Halide Perovskite Nanocrystals. Advanced Functional Materials, 2020, 30, 2000026.	14.9	68
59	Rationally assembled porous carbon superstructures for advanced supercapacitors. Chemical Engineering Journal, 2019, 361, 1296-1303.	12.7	67
60	Tailoring carbon nanomaterials via a molecular scissor. Nano Today, 2021, 36, 101033.	11.9	67
61	Flexible supercapacitors with high areal capacitance based on hierarchical carbon tubular nanostructures. Journal of Power Sources, 2016, 331, 332-339.	7.8	63
62	Quaternized Silk Nanofibrils for Electricity Generation from Moisture and Ion Rectification. ACS Nano, 2020, 14, 10600-10607.	14.6	60
63	Dynamically evolving 2D supramolecular polyaniline nanosheets for long-stability flexible supercapacitors. Chemical Engineering Journal, 2021, 423, 130203.	12.7	60
64	Ti ₃ C ₂ T _{<i>x</i>} MXene-Based Micro-Supercapacitors with Ultrahigh Volumetric Energy Density for All-in-One Si-Electronics. ACS Nano, 2022, 16, 3776-3784.	14.6	60
65	Stretchable Micromotion Sensor with Enhanced Sensitivity Using Serpentine Layout. ACS Applied Materials & Interfaces, 2019, 11, 12261-12271.	8.0	56
66	A piezo-phototronic enhanced serrate-structured ZnO-based heterojunction photodetector for optical communication. Nanoscale, 2019, 11, 3021-3027.	5.6	53
67	Highly Enantioselective Synthesis of 2,6-Disubstituted and 2,2,6-Trisubstituted Dihydropyrones:Â A One-Step Synthesis of (R)-(+)-Hepialone and Its Analogues. Journal of Organic Chemistry, 2005, 70, 8533-8537.	3.2	52
68	Dual-luminescence-center single-component white-light Sr2V2O7:Eu3+ phosphors for white LEDs. Acta Materialia, 2013, 61, 5096-5104.	7.9	51
69	Constructing Gradient Energy Levels to Promote Exciton Energy Transfer for Photoluminescence Controllability of All-Inorganic Perovskites and Application in Single-Component WLEDs. Chemistry of Materials, 2019, 31, 5616-5624.	6.7	51
70	MXene based mechanically and electrically enhanced film for triboelectric nanogenerator. Nano Research, 2021, 14, 4833-4840.	10.4	51
71	Air‣table Conductive Polymer Ink for Printed Wearable Micro‣upercapacitors. Small, 2021, 17, e2100956	10.0	51
72	Synthetic Biopigment Supercapacitors. ACS Applied Materials & amp; Interfaces, 2019, 11, 30360-30367.	8.0	50

#	Article	IF	CITATIONS
73	Understanding the Potential Screening Effect through the Discretely Structured ZnO Nanorods Piezo Array. Nano Letters, 2020, 20, 4270-4277.	9.1	47
74	A novel stretchable supercapacitor electrode with high linear capacitance. Chemical Engineering Journal, 2018, 349, 168-175.	12.7	46
75	Freeâ€Fixed Rotational Triboelectric Nanogenerator for Selfâ€Powered Realâ€Time Wheel Monitoring. Advanced Materials Technologies, 2021, 6, 2000918.	5.8	46
76	In Situ Direct Method To Massively Prepare Hydrophilic Porous Carbide-Derived Carbons for High-Performance Supercapacitors. ACS Applied Energy Materials, 2018, 1, 3544-3553.	5.1	45
77	Aqueous Phase Exfoliating Quasiâ€2D CsPbBr ₃ Nanosheets with Ultrahigh Intrinsic Water Stability. Small, 2019, 15, e1901994.	10.0	45
78	Three-dimensional polymer networks for solid-state electrochemical energy storage. Chemical Engineering Journal, 2020, 391, 123548.	12.7	44
79	Surface pre-optimization of a mixed halide perovskite toward high photoluminescence quantum yield in the blue spectrum range. Nanoscale, 2019, 11, 15206-15215.	5.6	43
80	Flexible pyroelectric generators for scavenging ambient thermal energy and as self-powered thermosensors. Energy, 2016, 101, 202-210.	8.8	41
81	Cryogenicâ€Temperature Thermodynamically Suppressed and Strongly Confined CsPbBr ₃ Quantum Dots for Deeply Blue Lightâ€Emitting Diodes. Advanced Optical Materials, 2021, 9, 2100300.	7.3	41
82	Enhancing Lithium Adsorption and Diffusion toward Extraordinary Lithium Storage Capability of Freestanding Ti ₃ C ₂ T _{<i>x</i>} MXene. Journal of Physical Chemistry C, 2019, 123, 2792-2800.	3.1	40
83	Trivalent europium-doped strontium molybdate red phosphors in white light-emitting diodes: Synthesis, photophysical properties and theoretical calculations. Acta Materialia, 2012, 60, 5399-5407.	7.9	39
84	Bandwidth increasing mechanism by introducing a curve fixture to the cantilever generator. Applied Physics Letters, 2016, 109, .	3.3	38
85	Fluorescence spectra and crystal field analysis of BaMoO4: Eu3+ phosphors for white light-emitting diodes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 123, 12-17.	3.9	37
86	Tailoring Ti3CNT MXene via an acid molecular scissor. Nano Energy, 2021, 85, 106007.	16.0	36
87	Understanding the Percolation Effect in Triboelectric Nanogenerator with Conductive Intermediate Layer. Research, 2021, 2021, 7189376.	5.7	35
88	Filling the holes in piezopolymers with a solid electrolyte: a new paradigm of poling-free dynamic electrets for energy harvesting. Journal of Materials Chemistry A, 2017, 5, 189-200.	10.3	34
89	Piezoresistive effect in MoO3 nanobelts and its application in strain-enhanced oxygen sensors. Nano Research, 2014, 7, 180-189.	10.4	33
90	Strong influence of substrate temperature on the growth of nanocrystalline MoO3 thin films. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 3965-3968.	2.1	32

#	Article	IF	CITATIONS
91	Composition controlled nickel cobalt sulfide core–shell structures as high capacity and good rate-capability electrodes for hybrid supercapacitors. RSC Advances, 2016, 6, 50209-50216.	3.6	32
92	Self-powered graphene quantum dot/poly(vinylidene fluoride) composites with remarkably enhanced mechanical-to-electrical conversion. RSC Advances, 2016, 6, 67400-67408.	3.6	31
93	Enhanced performance of ZnO microballoon arrays for a triboelectric nanogenerator. Nanotechnology, 2017, 28, 135401.	2.6	31
94	Glowing stereocomplex biopolymers are generating power: polylactide/carbon quantum dot hybrid nanofibers with high piezoresponse and multicolor luminescence. Journal of Materials Chemistry A, 2019, 7, 1810-1823.	10.3	31
95	Self-assembly defect-regulating superstructured carbon. Energy Storage Materials, 2022, 48, 164-171.	18.0	31
96	A low-frequency, broadband and tri-hybrid energy harvester with septuple-stable nonlinearity-enhanced mechanical frequency up-conversion mechanism for powering portable electronics. Nano Energy, 2019, 64, 103943.	16.0	30
97	Self-assembly biomimetic fern leaf-like α-Fe2O3 for sensing inflammable 1-butanol gas. Sensors and Actuators B: Chemical, 2017, 243, 29-35.	7.8	29
98	An enhanced low-frequency vibration ZnO nanorod-based tuning fork piezoelectric nanogenerator. Nanoscale, 2018, 10, 843-847.	5.6	29
99	A review of low-dimensional metal halide perovskites for blue light emitting diodes. Journal of Alloys and Compounds, 2021, 883, 160727.	5.5	29
100	Dielectric micro-capacitance for enhancing piezoelectricity via aligning MXene sheets in composites. Cell Reports Physical Science, 2022, 3, 100814.	5.6	29
101	Boosting the energy density of aqueous MXeneâ€based supercapacitor by integrating 3D conducting polymer hydrogel cathode. SusMat, 2022, 2, 379-390.	14.9	29
102	Internally-externally defects-tailored MAPbI3 perovskites with highly enhanced air stability and quantum yield. Chemical Engineering Journal, 2020, 399, 125715.	12.7	28
103	Antisolventâ€Induced Fastly Grown Allâ€Inorganic Perovskite CsPbCl ₃ Microcrystal Films for Highâ€5ensitive UV Photodetectors. Advanced Materials Interfaces, 2021, 8, 2001812.	3.7	28
104	3D Pt/MoO 3 nanocatalysts fabricated for effective electrocatalytic oxidation of alcohol. Applied Surface Science, 2015, 356, 294-300.	6.1	25
105	Conducting polymer ink for flexible and printable micro-supercapacitors with greatly-enhanced rate capability. Journal of Power Sources, 2021, 513, 230555.	7.8	25
106	Preparation and luminescent properties of self-organized broccoli-like SrMoO4: Pr3+ superparticles. Journal of Luminescence, 2017, 190, 69-75.	3.1	24
107	Defect model and spin-Hamiltonian parameters for the tetragonal Mo ⁵⁺ and W ⁵⁺ centers in Cs ₂ ZrCl ₆ and Cs ₂ HfCl ₆ crystals. Philosophical Magazine, 2009, 89, 1621-1628.	1.6	23
108	Microstructure-Based Interfacial Tuning Mechanism of Capacitive Pressure Sensors for Electronic Skin. Journal of Sensors, 2016, 2016, 1-8.	1.1	23

#	Article	IF	CITATIONS
109	Controllable synthesis of self-assembly Co ₃ O ₄ nanoflake microspheres for electrochemical performance. Nanotechnology, 2016, 27, 355603.	2.6	23
110	Intelligent Sensing System Based on Hybrid Nanogenerator by Harvesting Multiple Clean Energy. Advanced Engineering Materials, 2018, 20, 1700886.	3.5	23
111	Pressure-crystallized piezopolymer/ionomer/graphene quantum dot composites: A novel poling-free dynamic hybrid electret with enhanced energy harvesting properties. Composites Science and Technology, 2018, 164, 282-289.	7.8	23
112	Synthesis of Sizeâ€Controllable NiCo ₂ S ₄ Hollow Nanospheres Toward Enhanced Electrochemical Performance. Energy and Environmental Materials, 2020, 3, 421-428.	12.8	23
113	Perspectives on preparation of two-dimensional MXenes. Science and Technology of Advanced Materials, 2021, 22, 917-930.	6.1	22
114	From high-yield Ti3AlCN ceramics to high-quality Ti3CNT MXenes through eliminating Al segregation. Chinese Chemical Letters, 2020, 31, 1044-1048.	9.0	21
115	The metal doping strategy in all inorganic lead halide perovskites: synthesis, physicochemical properties, and optoelectronic applications. Nanoscale, 2021, 13, 18010-18031.	5.6	21
116	Biomass-derived nanostructured coatings based on cellulose nanofibers-melanin hybrids toward solar-enabled multifunctional energy management. Nano Energy, 2022, 97, 107180.	16.0	21
117	EPR g factors and tetragonal distortion for the isoelectronic Ni+ and Cu2+ centers in the CuGaSe2 crystal. Journal of Magnetism and Magnetic Materials, 2011, 323, 528-531.	2.3	20
118	Investigations of the spin-Hamiltonian parameters and tetragonal distortion due to the Jahn–Teller effect for Cu(H2O)62+ clusters in C(NH2)3Al(SO4)2·6H2O: Cu2+ crystal. Physica B: Condensed Matter, 2010, 405, 2018-2020.	2.7	19
119	Enhanced performance of core-shell structured polyaniline at helical carbon nanotube hybrids for ammonia gas sensor. Applied Physics Letters, 2014, 105, 203109.	3.3	19
120	Theoretical spectra identification and fluorescent properties of reddish orange Sm-doped BaTiO 3 phosphors. Journal of Alloys and Compounds, 2015, 643, 247-252.	5.5	19
121	Understanding Excitonic Behavior in Light Absorption and Recombination Process. Journal of Physical Chemistry C, 2020, 124, 26076-26082.	3.1	19
122	Fabrication and field emission properties of needle-shaped MoO3 nanobelts. Journal of Alloys and Compounds, 2013, 576, 332-335.	5.5	18
123	A high-performance white-light-emitting-diodes based on nano-single crystal divanadates quantum dots. Scientific Reports, 2015, 5, 10460.	3.3	18
124	Space matters: Li+ conduction versus strain effect at FePO4/LiFePO4 interface. Applied Physics Letters, 2016, 108, .	3.3	18
125	Water-evaporation-induced intermolecular force for nano-wrinkled polymeric membrane. Cell Reports Physical Science, 2021, 2, 100441.	5.6	18
126	Physicochemically dendrite-suppressed three-dimensional fluoridation solid-state electrolyte for high-rate lithium metal battery. Cell Reports Physical Science, 2021, 2, 100644.	5.6	18

#	Article	IF	CITATIONS
127	Theoretical calculations of the spin-Hamiltonian parameters from a two-mechanism model for Cr ⁵⁺ ions in MVO ₃ (M = Li, Na, K, Rb) crystals. Molecular Physics, 2009, 107, 2245-2249.	1.7	17
128	Understanding the Ion-Sorption Dynamics in Functionalized Porous Carbons for Enhanced Capacitive Energy Storage. ACS Applied Materials & 2020, 12, 2009, 12, 2773-2782.	8.0	17
129	Chainâ€Elongated Ionic Liquid Electrolytes for Low Selfâ€Discharge Allâ€Solidâ€State Supercapacitors at High Temperature. ChemSusChem, 2021, 14, 3895-3903.	6.8	17
130	Pair directed silver nano-lines by single-particle assembly in nanofibers for non-contact humidity sensors. Nano Energy, 2022, 92, 106748.	16.0	17
131	Controllable in-situ-oxidization of 3D-networked Ti3C2T -TiO2 photodetectors for large-area flexible optical imaging. Nano Energy, 2022, 93, 106889.	16.0	17
132	Studies of the tetragonal distortion due to Jahn–Teller effect for the Cu ²⁺ centres in trigonal ZnMF ₆ ·6H ₂ O (M = Si, Ti, Zr) crystals from the calculations of spinâ€Hamiltonian parameters. Physica Status Solidi (B): Basic Research, 2009, 246, 1915-1918.	1.5	16
133	Water Energy Harvesting and Selfâ€Powered Visible Light Communication Based on Triboelectric Nanogenerator. Energy Technology, 2018, 6, 1929-1934.	3.8	16
134	Na ⁺ and Pr ³⁺ co-doped orange-emitting CaYAl ₃ O ₇ phosphors: synthesis, luminescence properties and theoretical calculations. Dalton Transactions, 2018, 47, 17515-17524.	3.3	16
135	Ethanol–water-assisted room temperature synthesis of CsPbBr3/SiO2 nanocomposites with high stability in ethanol. Journal of Materials Science, 2019, 54, 3786-3794.	3.7	16
136	Investigations of the optical spectra and EPR g factors for the tetragonal Cu2+ centers in trigonal ZnCO3 crystal. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 75, 458-460.	3.9	15
137	Investigations of the spin-Hamiltonian parameters and tetragonal distortions due to Jahn–Teller effect for the monovalent d9 (Ni+, Pd+, Pt+) impurity centers in AgCl crystals. Journal of Alloys and Compounds, 2010, 507, 498-501.	5.5	15
138	Self-Powered Nanocomposites under an External Rotating Magnetic Field for Noninvasive External Power Supply Electrical Stimulation. ACS Applied Materials & Interfaces, 2017, 9, 38323-38335.	8.0	15
139	Copper-doping defect-lowered perovskite nanosheets for deep-blue light-emitting diodes. Journal of Colloid and Interface Science, 2022, 607, 1796-1804.	9.4	15
140	Understanding the Enhancement Mechanism of ZnO Nanorod-based Piezoelectric Devices through Surface Engineering. ACS Applied Materials & Interfaces, 2022, 14, 29061-29069.	8.0	15
141	Spin-Hamiltonian parameters and tetragonal distortion due to the Jahn–Teller effect for Cu2+centres in trigonal Zn(BrO3)·6H2O crystal. Molecular Physics, 2009, 107, 2293-2297.	1.7	14
142	Studies of the spin-Hamiltonian parameters and the Jahn–Teller distortions for tetragonal Cu(H2O)62+ clusters in trigonal A2Mg3(NO3)12·24H2O (A=La, Bi) crystals. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 75, 1280-1282.	3.9	14
143	Low toxicity antisolvent synthesis of composition-tunable luminescent all-inorganic perovskite nanocrystals. Ceramics International, 2018, 44, 18123-18128.	4.8	14
144	Visible and near-infrared luminescent properties of Pr3+ doped strontium molybdate thin films by a facile polymer-assisted deposition process. Journal of Colloid and Interface Science, 2018, 531, 181-188.	9.4	14

#	Article	IF	CITATIONS
145	Nanogenerators Begin to Light Up: A Novel Polingâ€Free Piezoelectric System with Multicolor Photoluminescence as an Efficient Mechatronics Development Platform. Advanced Materials Interfaces, 2018, 5, 1800587.	3.7	14
146	Thermodynamics-Induced Injection Enhanced Deep-Blue Perovskite Quantum Dot LEDs. ACS Applied Materials & Interfaces, 2021, 13, 57560-57566.	8.0	14
147	Structurally Unraveling the Photocarrier Behavior of Cu ₂ O/ZnO Heterojunction Photodetectors. ACS Photonics, 2022, 9, 268-274.	6.6	14
148	Intrinsically Stretchable and Shape Memory Conducting Nanofiber for Programmable Flexible Electronic Films. ACS Applied Materials & Interfaces, 2019, 11, 48202-48211.	8.0	13
149	Coaxially enhanced photocarrier transport of a highly oriented Cu ₂ ZnSnS ₄ /ZnO photodetector through the nanoconfinement effect. Journal of Materials Chemistry C, 2020, 8, 3491-3497.	5.5	13
150	Carbon Nanolights in Piezopolymers are Selfâ€Organizing Toward Color Tunable Luminous Hybrids for Kinetic Energy Harvesting. Small, 2020, 16, e1905703.	10.0	13
151	Transient response of a nonlinear energy sink based piezoelectric vibration energy harvester coupled to a synchronized charge extraction interface. Nano Energy, 2021, 87, 106179.	16.0	13
152	A theoretical study of EPR g factors for the rhombic CuCl64â^' clusters in (3-chloroanilinium)8[CdCl6]Cl4:Cu2+ crystal. Physica B: Condensed Matter, 2010, 405, 3642-3644.	2.7	12
153	Modeling and harmonic analysis of energy extracting performance of a piezoelectric nonlinear energy sink system with AC and DC interface circuits. Mechanical Systems and Signal Processing, 2021, 155, 107609.	8.0	12
154	Investigations of spinâ€Hamiltonian parameters and defect structures for two tetragonal Cu ²⁺ centers in KTaO ₃ crystal. Crystal Research and Technology, 2010, 45, 1132-1136.	1.3	11
155	Synthesis, Spectra, and Theoretical Investigations of 1,3,5-Triazines Compounds as Ultraviolet Rays Absorber Based on Time-Dependent Density Functional Calculations and three-Dimensional Quantitative Structure-Property Relationship. Journal of Fluorescence, 2018, 28, 707-723.	2.5	11
156	Expecting the unexpected: high pressure crystallization significantly boosts up triboelectric outputs of microbial polyesters. Journal of Materials Chemistry A, 2021, 9, 6306-6315.	10.3	11
157	2D-Nb ₂ CT _{<i>z</i>} -Supported, 3D-Carbon-Encapsulated, Oxygen-Deficient Nb ₂ O ₅ for an Advanced Li-Ion Battery. ACS Applied Energy Materials, 2022, 5, 2121-2129.	5.1	11
158	Investigations of the optical spectra and EPR g factors for LuAlO3:Ce3+ crystal. Physica B: Condensed Matter, 2010, 405, 1055-1057.	2.7	10
159	Theoretical Studies of the Electron Paramagnetic Resonance and Optical Spectral Data for Vanadium(IV) Ion in Yttrium Aluminum Garnet Crystal. Spectroscopy Letters, 2011, 44, 354-358.	1.0	10
160	A theoretical study on the temperature dependence of zero-field splitting for the tetragonal Cr3+ center in MgO crystal. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 78, 818-820.	3.9	10
161	First principle study of the electronic structure of hafnium-doped anatase TiO ₂ . Journal of Semiconductors, 2012, 33, 012002.	3.7	10
162	Electric-Field-Induced Ion Migration Behavior in Methylammonium Lead Iodide Perovskite. Journal of Physical Chemistry Letters, 2021, 12, 7106-7112.	4.6	10

#	Article	IF	CITATIONS
163	Energy scavenging luminescent piezo-fabrics: small silicon dots enable big electrical outputs. Journal of Materials Chemistry A, 2021, 9, 13231-13241.	10.3	10
164	Studies of the spin-Hamiltonian parameters, d–d transitions and defect structures for two tetragonal Cu2+ centers in Ba2ZnF6:Cu2+ crystal. Journal of Luminescence, 2009, 129, 1371-1374.	3.1	9
165	One-step hot injection synthesis of gradient alloy CdxZn1-xSySe1-y quantum dots with large-span self-regulating ability. Journal of Luminescence, 2019, 206, 565-570.	3.1	9
166	Electrospun luminescent piezo webs as self-powered sensing platform for small accelerations at low frequency. Composites Communications, 2020, 20, 100348.	6.3	9
167	Spin-Hamiltonian parameters for the tetragonal centers in CaF2 and SrF2 crystals. Journal of Magnetic Resonance, 2013, 227, 62-65.	2.1	8
168	High-Performance Simultaneous Two-Photon Absorption Upconverted Stimulated Single-Component Sr2V2O7 Phosphor for White LEDs. Journal of Electronic Materials, 2015, 44, 3465-3470.	2.2	8
169	Hybrid nanogenerators for low frequency vibration energy harvesting and self-powered wireless locating. Materials Research Express, 2018, 5, 015510.	1.6	8
170	Solving Gravimetric-Volumetric Capacitive Paradox of 2D Materials through Dual-Functional Chemical Bonding-Induced Self-Constructing Graphene-MXene Monoliths. ACS Applied Materials & Interfaces, 2021, 13, 6339-6348.	8.0	8
171	Unraveling the role of hydrogen bromide in the growth of cesium lead bromide perovskite nanocrystals. Journal of Colloid and Interface Science, 2022, 626, 591-598.	9.4	8
172	Investigations of the spin-Hamiltonian parameters for Yb ³⁺ in the tetragonal phase of SrTiO ₃ crystal. Philosophical Magazine, 2010, 90, 2899-2904.	1.6	7
173	Defect model and spin-Hamiltonian parameters for the tetragonal Nd3+ center in the tetragonal phase of SrTiO3 crystal. Physica B: Condensed Matter, 2011, 406, 1041-1043.	2.7	7
174	Perovskite Quantum Dots for Lewis Acid–Base Interactions and Interface Engineering in Lithium-Metal Batteries. ACS Applied Energy Materials, 2021, 4, 11470-11479.	5.1	7
175	Liquid Nitrogen Passivation for Deep-Blue Perovskite Quantum Dots with Nearly Unit Quantum Yield. Journal of Physical Chemistry C, 2022, 126, 1017-1025.	3.1	7
176	Structurally Tolerance-Factor-Tuned Metal Halide Nanocrystals for Environmentally Stable and Efficient Red Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2022, 13, 2217-2225.	4.6	7
177	The high-pressure structural transition in MnS: an <i>ab initio</i> study. Molecular Physics, 2011, 109, 251-256.	1.7	6
178	Studies of the local compressibility of Cr3+-centered octahedron in LiSc (WO4)2crystal from the pressure dependence of the optical spectra. Radiation Effects and Defects in Solids, 2011, 166, 160-163.	1.2	6
179	Studies of the spin-Hamiltonian parameters and defect structures for Gd3+ ions in zircon-structure silicates MSiO4 (M=Zr, Hf, Th). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 79, 1291-1294.	3.9	6
180	All‣prayable Hierarchically Nanostructured Conducting Polymer Hydrogel for Massively Manufactured Flexible All‣olid‣tate Supercapacitor. Energy Technology, 2019, 7, 1801109.	3.8	6

#	Article	IF	CITATIONS
181	Grain-orientation-engineered textured BaMoO4: Eu3+ luminescent thin film. Ceramics International, 2020, 46, 27238-27243.	4.8	6
182	Rational Building of Nonblinking Carbon Dots via Charged State Recovery. Journal of Physical Chemistry Letters, 2021, 12, 8614-8620.	4.6	6
183	Crystallization control <i>via</i> a molecular needle knitting strategy for the enhanced emission efficiency and stability of CsPbBr ₃ films. Journal of Materials Chemistry C, 2021, 9, 15967-15976.	5.5	6
184	Studies on the spin-Hamiltonian parameters of CuN6 clusters and their tetragonal distortions due to Jahn–Teller effect for Cu2+ in trigonal M(1-propyltetrazole)6(BF4)2 (M=Zn, Fe) crystals. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 77, 1088-1091.	3.9	5
185	Investigations of EPR parameters and defect models for three Yb3+ impurity centers in ThO2 and CeO2 crystals. Physica B: Condensed Matter, 2010, 405, 2326-2328.	2.7	5
186	Growth behavior and photoluminescence properties of ZnO nanowires on gold nano-particle coated Si surfaces. Journal of Crystal Growth, 2012, 340, 83-86.	1.5	5
187	Functional Nanomaterials for Sustainable Energy Technologies. Journal of Nanomaterials, 2016, 2016, 1-2.	2.7	5
188	Structural and Optical Investigations of Quasi-Single Crystal Eu ³⁺ -Doped BaWO ₄ Thin Films. Langmuir, 2018, 34, 8499-8507.	3.5	5
189	A Perovskiteâ€Based Photodetector with Enhanced Light Absorption, Heat Dissipation, and Humidity Stability. Advanced Photonics Research, 2021, 2, 2100123.	3.6	5
190	Red carbon dot directed biocrystalline alignment for piezoelectric energy harvesting. Nanoscale, 2022, 14, 9031-9044.	5.6	5
191	STUDIES OF THE SPIN-HAMILTONIAN PARAMETERS AND OPTICAL SPECTRUM BAND POSITIONS FOR THE Yb3+ ION IN Tm3Al5O12 CRYSTALS. Modern Physics Letters B, 2009, 23, 2457-2462.	1.9	4
192	Spin-Hamiltonian parameters and defect structure for tetragonal Pr4+ centers in ZrSiO4 crystal. Physica B: Condensed Matter, 2009, 404, 1806-1808.	2.7	4
193	Investigations of the spin-Hamiltonian parameters for Er ³⁺ ions in AlN crystal. Molecular Physics, 2009, 107, 2551-2554.	1.7	4
194	Investigations of the spin-Hamiltonian parameters and tetragonal compression due to the static Jahn–Teller effect for Cr5+ center in cubic SrTiO3 crystal. Physica B: Condensed Matter, 2010, 405, 4871-4874.	2.7	4
195	A theoretical investigation of the spin-Hamiltonian parameters for Dy3+ ion in CaWO4 crystal. Physica B: Condensed Matter, 2010, 405, 3904-3906.	2.7	4
196	Substitutional site of Co2+ion in RbMgF3crystal. Radiation Effects and Defects in Solids, 2010, 165, 260-264.	1.2	4
197	Theoretical studies of the spin-Hamiltonian parameters and defect structure for the tetragonal Gd3+center in cubic c-RbZnF3crystal. Philosophical Magazine, 2011, 91, 4045-4052.	1.6	4
198	High-performance optical projection controllable ZnO nanorod arrays for microweighing sensors. Nanoscale, 2018, 10, 4727-4734.	5.6	4

#	Article	IF	CITATIONS
199	Facile and lowâ€cost fabrication of uniform silicon micro/nanostructures by nanopittingâ€assisted wet chemical etching. Micro and Nano Letters, 2018, 13, 1296-1301.	1.3	4
200	Allâ€Inorganic Perovskites: Aqueous Phase Exfoliating Quasiâ€2D CsPbBr ₃ Nanosheets with Ultrahigh Intrinsic Water Stability (Small 34/2019). Small, 2019, 15, 1970182.	10.0	4
201	Controllable metastable growth of perovskite single crystals for highly sensitive X-ray detection. Journal of Materials Chemistry C, 2022, 10, 6837-6845.	5.5	4
202	Unraveling hole interlayer-dependent interfacial energetics of LEDs. Nano Energy, 2022, 102, 107621.	16.0	4
203	Studies of the EPR parameters and defect models for three Er3+ impurity centers in ThO2 crystals. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 77, 276-278.	3.9	3
204	Studies of the optical spectrum band positions and spin-Hamiltonian parameters for Pa4+ ion in ThX4 (X=Cl, Br) crystals. Journal of Luminescence, 2010, 130, 2133-2135.	3.1	3
205	Local compressibility and substitutional site for the dominant Cr3+-centered octahedron in LaMgAl11O19 crystal. Physica B: Condensed Matter, 2010, 405, 218-220.	2.7	3
206	A study of spin-Hamiltonian parameters and defect structure for Nd3+ in ZrSiO4 crystal. Physica B: Condensed Matter, 2010, 405, 231-233.	2.7	3
207	A study of the spin-Hamiltonian parameters for the trigonal Sm3+ center in La2Mg3(NO3)12·24H2O crystal. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 78, 231-233.	3.9	3
208	Spin-Hamiltonian parameters and defect structure for the rhombic Dy3+ center in AgCl crystal. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 78, 343-346.	3.9	3
209	A facile in-situ growth of large area flexible α-MoO3 microsheets aligned arrays for temperature sensor. Journal of Alloys and Compounds, 2017, 695, 2965-2968.	5.5	3
210	Luminescent Enhancement of Na+ and Sm3+ Co-doping Reddish Orange SrCa3Si2O8 Phosphors. Journal of Electronic Materials, 2018, 47, 2386-2393.	2.2	3
211	Nonblinking Colloidal Quantum Dots via Efficient Multiexciton Emission. Journal of Physical Chemistry Letters, 2022, 13, 2371-2378.	4.6	3
212	Theoretical calculations of the spin-Hamiltonian parameters for the tetragonal Dy3+ center in HfSiO4 crystal. Physica B: Condensed Matter, 2010, 405, 2697-2699.	2.7	2
213	Investigation on the spin-Hamiltonian parameters and defect structure for Co2+ions in Na2MgAlF7crystals. Radiation Effects and Defects in Solids, 2010, 165, 11-15.	1.2	2
214	Investigations of the spin-Hamiltonian parameters and defect structures for Gd3+ ions in YMO4 (M=V,) Tj ETQq()00 ₁ gBT	/Oyerlock 10
215	Spin-Hamiltonian Parameters of Gd ³⁺ Ion in the Room Temperature Tetragonal Phase of BaTiO ₃ . Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2014, 69, 606-610.	1.5	2

216 Wearable Bioelectronics: Airâ€Stable Conductive Polymer Ink for Printed Wearable Microâ€Supercapacitors (Small 25/2021). Small, 2021, 17, 2170128.

10.0 2

#	Article	IF	CITATIONS
217	Spin-Hamiltonian parameters for Dy3+ ion at the trigonal 12-fold coordinated La3+ site of La2Mg3(NO3)12A-24H2O. Crystal Research and Technology, 2010, 45, 863-866.	1.3	1
218	Spin-Hamiltonian parameters and angular distortion for the trigonal Nd3+ center in congruent LiNbO3. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 75, 1443-1445.	3.9	1
219	Investigation of the spin-Hamiltonian parameters for the trigonal U5+ center in CaF2 crystal. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 76, 71-73.	3.9	1
220	Investigations on thegfactors of the ground and excited states for Cu2+ions in ZnO crystal. Molecular Physics, 2010, 108, 1583-1588.	1.7	1
221	Spin-Hamiltonian parameters and local rotational order parameters for Gd3+ ion in the tetragonal phase of SrTiO3 crystal. Physica B: Condensed Matter, 2011, 406, 3450-3453.	2.7	1
222	An investigation of the spin-Hamiltonian parameters for Gd ³⁺ -doped YBa ₂ Cu ₃ O _{6+<i>y</i>} (<i>y</i> = 0.06) superconductor. Superconductor Science and Technology, 2012, 25, 065011.	3.5	1
223	Spin-Hamiltonian parameters and defect structures for two tetragonal Gd3+ centers in Gd3+-dpoed Tl2ZnF4 crystal. Journal of Fluorine Chemistry, 2013, 153, 7-11.	1.7	1
224	Localized quenching sites in MAPbI3 investigated by fluorescence and photothermal microscopy. Review of Scientific Instruments, 2021, 92, 083701.	1.3	1
225	A micro-vibration apparatus for dynamic mechanical analysis of ultrathin polymer films. Review of Scientific Instruments, 2021, 92, 103904.	1.3	1
226	Theoretical investigation on the spin-Hamiltonian parameters for Gd3+-doped molybdates AMoO4 (A=Ca, Sr, Ba, Pb). Wuli Xuebao/Acta Physica Sinica, 2013, 62, 047102.	0.5	1
227	Unified calculations of the EPR g factors and zero-field splitting for the tetragonal Gd3+ center in Pr1.98Gd0.02CuO4. Physica C: Superconductivity and Its Applications, 2011, 471, 290-292.	1.2	0