## François Mariette

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1834366/publications.pdf Version: 2024-02-01



EDANÃSOIS MADIETTE

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magnetic Resonance Imaging, 2004, 22, 81-91.                                                                                      | 1.8 | 448       |
| 2  | Investigations of food colloids by NMR and MRI. Current Opinion in Colloid and Interface Science, 2009, 14, 203-211.                                                                                                                          | 7.4 | 109       |
| 3  | Rehydration of casein powders: effects of added mineral salts and salt addition methods on water transfer. International Dairy Journal, 2002, 12, 51-57.                                                                                      | 3.0 | 88        |
| 4  | 1H nuclear magnetic resonance relaxometric characterization of fat and water states in soft and hard cheese. Journal of Dairy Research, 2000, 67, 609-618.                                                                                    | 1.4 | 73        |
| 5  | Monitoring the postharvest ripening of tomato fruit using quantitative MRI and NMR relaxometry.<br>Postharvest Biology and Technology, 2009, 53, 22-35.                                                                                       | 6.0 | 68        |
| 6  | Efficient Maximum Entropy Reconstruction of Nuclear Magnetic Resonance T1-T2 Spectra. IEEE<br>Transactions on Signal Processing, 2010, 58, 6040-6051.                                                                                         | 5.3 | 67        |
| 7  | Evolution of water proton nuclear magnetic relaxation during milk coagulation and syneresis:<br>Structural implications. Journal of Agricultural and Food Chemistry, 1993, 41, 2259-2266.                                                     | 5.2 | 57        |
| 8  | Temperature-Associated Proton Dynamics in Wheat Starch-Based Model Systems and Wheat Flour<br>Dough Evaluated by NMR. Food and Bioprocess Technology, 2015, 8, 777-790.                                                                       | 4.7 | 55        |
| 9  | Quantification of muscle, subcutaneous fat and intermuscular fat in pig carcasses and cuts by magnetic resonance imaging. Meat Science, 2006, 72, 146-154.                                                                                    | 5.5 | 51        |
| 10 | Multinuclear NMR study of the pH dependent water state in skim milk and caseinate solutions. Journal of Dairy Research, 1993, 60, 175-188.                                                                                                    | 1.4 | 50        |
| 11 | NMR Relaxation and Water Self-Diffusion Studies in Whey Protein Solutions and Gels. Journal of Agricultural and Food Chemistry, 2005, 53, 6784-6790.                                                                                          | 5.2 | 47        |
| 12 | 1H NMR Diffusometry Study of Water in Casein Dispersions and Gels. Journal of Agricultural and Food<br>Chemistry, 2002, 50, 4295-4302.                                                                                                        | 5.2 | 46        |
| 13 | Analysis of the dynamic mechanical properties of apple tissue and relationships with the intracellular water status, gas distribution, histological properties and chemical composition. Postharvest Biology and Technology, 2015, 104, 1-16. | 6.0 | 46        |
| 14 | 1H Nuclear Magnetic Resonance Relaxometry Study of Water State in Milk Protein Mixtures. Journal of<br>Agricultural and Food Chemistry, 2004, 52, 5449-5455.                                                                                  | 5.2 | 42        |
| 15 | Impact of Casein Gel Microstructure on Self-Diffusion Coefficient of Molecular Probes Measured by1H PFG-NMR. Journal of Agricultural and Food Chemistry, 2007, 55, 10764-10772.                                                               | 5.2 | 42        |
| 16 | NMR Signal Analysis To Attribute the Components to the Solid/Liquid Phases Present in Mixes and Ice<br>Creams. Journal of Agricultural and Food Chemistry, 2005, 53, 1317-1327.                                                               | 5.2 | 38        |
| 17 | Effect of Casein Concentration in Suspensions and Gels on Poly(ethylene glycol)s NMR Self-Diffusion<br>Measurements. Macromolecules, 2005, 38, 9171-9179.                                                                                     | 4.8 | 37        |
| 18 | NMR assessment of ice cream: Effect of formulation on liquid and solid fat. International Dairy<br>Journal, 2005, 15, 1225-1233.                                                                                                              | 3.0 | 37        |

François Mariette

| #  | Article                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | NMR Study of Water Distribution inside Tomato Cells: Effects of Water Stress. Applied Magnetic<br>Resonance, 2010, 38, 455-469.                                                                                                                         | 1.2  | 36        |
| 20 | An investigation of the structural aspects of the tomato fruit by means of quantitative nuclear magnetic resonance imaging. Magnetic Resonance Imaging, 2009, 27, 709-719.                                                                              | 1.8  | 35        |
| 21 | Determination of water self-diffusion coefficient in complex food products by low field 1H PFG-NMR:<br>comparison between the standard spin-echo sequence and the T1-weighted spin-echo sequence. Journal<br>of Magnetic Resonance, 2003, 165, 265-275. | 2.1  | 33        |
| 22 | Pulsed Field Gradient NMR Study of Poly(ethylene glycol) Diffusion in Whey Protein Solutions and<br>Gels. Macromolecules, 2006, 39, 1053-1059.                                                                                                          | 4.8  | 32        |
| 23 | Evolution of Fat Crystal Network Microstructure Followed by NMR. Journal of Agricultural and Food Chemistry, 2011, 59, 1767-1773.                                                                                                                       | 5.2  | 32        |
| 24 | MRI method for investigation of eye growth in semi-hard cheese. Journal of Food Engineering, 2014, 121, 152-158.                                                                                                                                        | 5.2  | 31        |
| 25 | Nanoparticle diffusometry for quantitative assessment of submicron structure in food biopolymer networks. Trends in Food Science and Technology, 2015, 42, 13-26.                                                                                       | 15.1 | 30        |
| 26 | Influence of fat globule membrane composition on water holding capacity and water mobility in<br>casein rennet gel: A nuclear magnetic resonance self-diffusion and relaxation study. International<br>Dairy Journal, 2006, 16, 344-353.                | 3.0  | 28        |
| 27 | Assessment of nutrient remobilization through structural changes of palisade and spongy parenchyma in oilseed rape leaves during senescence. Planta, 2015, 241, 333-346.                                                                                | 3.2  | 28        |
| 28 | Structural Changes in Senescing Oilseed Rape Leaves at Tissue and Subcellular Levels Monitored by<br>Nuclear Magnetic Resonance Relaxometry through Water Status. Plant Physiology, 2013, 163, 392-406.                                                 | 4.8  | 27        |
| 29 | MRI investigation of subcellular water compartmentalization and gas distribution in apples. Magnetic<br>Resonance Imaging, 2015, 33, 671-680.                                                                                                           | 1.8  | 27        |
| 30 | MSE-MRI sequence optimisation for measurement of bi- and tri-exponential T2 relaxation in a phantom and fruit. Magnetic Resonance Imaging, 2013, 31, 1677-1689.                                                                                         | 1.8  | 26        |
| 31 | Effects of Acidification with and without Rennet on a Concentrated Casein System:  A Kinetic NMR<br>Probe Diffusion Study. Macromolecules, 2008, 41, 2079-2086.                                                                                         | 4.8  | 24        |
| 32 | Multi-scale investigation of eyes in semi-hard cheese. Innovative Food Science and Emerging<br>Technologies, 2014, 24, 106-112.                                                                                                                         | 5.6  | 22        |
| 33 | The rennet coagulation mechanisms of a concentrated casein suspension as observed by PFG-NMR diffusion measurements. Food Hydrocolloids, 2012, 27, 456-463.                                                                                             | 10.7 | 20        |
| 34 | Effects of Casein and Fat Content on Water Self-Diffusion Coefficients in Casein Systems:  A Pulsed<br>Field Gradient Nuclear Magnetic Resonance Study. Journal of Agricultural and Food Chemistry, 2004,<br>52, 3988-3995.                             | 5.2  | 19        |
| 35 | Assessment of the State of Water in Reconstituted Milk Protein Dispersions by Nuclear Magnetic<br>Resonance (NMR) and Differential Scanning Calorimetry (DSC). LWT - Food Science and Technology,<br>2001, 34, 299-305.                                 | 5.2  | 18        |
| 36 | Water, ice and sucrose behavior in frozen sucrose–protein solutions as studied by 1H NMR. Food<br>Chemistry, 2004, 84, 77-89.                                                                                                                           | 8.2  | 18        |

François Mariette

| #  | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Effects of Crystal Growth and Polymorphism of Triacylglycerols on NMR Relaxation Parameters. 1.<br>Evidence of a Relationship between Crystal Size and Spinâ^'Lattice Relaxation Time. Crystal Growth and<br>Design, 2009, 9, 4273-4280.                  | 3.0  | 18        |
| 38 | PFG-NMR self-diffusion in casein dispersions: Effects of probe size and protein aggregate size. Food<br>Hydrocolloids, 2013, 31, 248-255.                                                                                                                 | 10.7 | 17        |
| 39 | Probe Mobility in Native Phosphocaseinate Suspensions and in a Concentrated Rennet Gel: Effects of<br>Probe Flexibility and Size. Journal of Agricultural and Food Chemistry, 2013, 61, 5870-5879.                                                        | 5.2  | 17        |
| 40 | Molecular Mobility in Dense Protein Systems: An Investigation through <sup>1</sup> H NMR<br>Relaxometry and Diffusometry. Journal of Physical Chemistry B, 2012, 116, 11744-11753.                                                                        | 2.6  | 16        |
| 41 | Sweetness and aroma perceptions in model dairy desserts: an overview. Flavour and Fragrance<br>Journal, 2006, 21, 48-52.                                                                                                                                  | 2.6  | 15        |
| 42 | PFGâ ``NMR Techniques Provide a New Tool for Continuous Investigation of the Evolution of the Casein Gel Microstructure after Renneting. Macromolecules, 2008, 41, 2071-2078.                                                                             | 4.8  | 15        |
| 43 | Nitrogen deficiency impacts on leaf cell and tissue structure with consequences for senescence associated processes in Brassica napus. , 2016, 57, 11.                                                                                                    |      | 15        |
| 44 | A mobile NMR lab for leaf phenotyping in the field. Plant Methods, 2017, 13, 53.                                                                                                                                                                          | 4.3  | 14        |
| 45 | Effects of Ionic Strength and Denaturation Time on Polyethyleneglycol Self-Diffusion in Whey Protein<br>Solutions and Gels Visualized by Nuclear Magnetic Resonance. Journal of Agricultural and Food<br>Chemistry, 2006, 54, 5105-5112.                  | 5.2  | 13        |
| 46 | Relaxation RMN et IRMÂ: un couplage indispensable pour l'étude des produits alimentaires. Comptes<br>Rendus Chimie, 2004, 7, 221-232.                                                                                                                     | 0.5  | 11        |
| 47 | Effects of Crystal Growth and Polymorphism of Triacylglycerols on NMR Relaxation Parameters. 2.<br>Study of a Tricaprinâ~'Tristearin Mixture. Crystal Growth and Design, 2009, 9, 4281-4288.                                                              | 3.0  | 11        |
| 48 | Investigation of curd grains in Swiss-type cheese using light and confocal laser scanning microscopy.<br>International Dairy Journal, 2013, 33, 10-15.                                                                                                    | 3.0  | 11        |
| 49 | Translational and rotational diffusion of flexible PEG and rigid dendrimer probes in sodium caseinate dispersions and acid gels. Biopolymers, 2014, 101, 959-965.                                                                                         | 2.4  | 11        |
| 50 | NMR relaxometry as a potential non-invasive routine sensor for characterization of phenotype in Crassostrea gigas. Aquaculture, 2009, 291, 74-77.                                                                                                         | 3.5  | 10        |
| 51 | Diffusion of polyethyleneglycols in casein solutions and gels as studied by pulsed field gradient NMR.<br>Magnetic Resonance Imaging, 2005, 23, 347-348.                                                                                                  | 1.8  | 8         |
| 52 | Leaf Development Monitoring and Early Detection of Water Deficiency by Low Field Nuclear Magnetic<br>Resonance Relaxation in Nicotiana tabacum Plants. Applied Sciences (Switzerland), 2018, 8, 943.                                                      | 2.5  | 8         |
| 53 | Impact of chemical exchange on transverse relaxation at low and moderate magnetic field strengths<br>for sugar solutions representative of fruit tissues analyzed by simulation and MRI experiments.<br>Journal of Magnetic Resonance, 2021, 322, 106872. | 2.1  | 7         |
| 54 | NMR study of fresh cut salads: Influence of temperature and storage time on leaf structure and water distribution in escarole. Magnetic Resonance in Chemistry, 2019, 57, 626-637.                                                                        | 1.9  | 6         |

| #  | Article                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Optimization of a maximum entropy criterion for 2D Nuclear Magnetic Resonance reconstruction. , 2010, , .                                            |     | 4         |
| 56 | Quality analysis of blue-veined cheeses by MRI: a preliminary study. , 2003, , .                                                                     |     | 3         |
| 57 | NMR Relaxometry and Imaging of Dairy Products. , 2018, , 1535-1557.                                                                                  |     | 3         |
| 58 | MRI Study of Temperature Dependence of Multi-exponential Transverse Relaxation Times in Tomato.<br>Applied Magnetic Resonance, 2021, 52, 1543-1560.  | 1.2 | 2         |
| 59 | Quantitative MRI analysis of structural changes in tomato tissues resulting from dehydration.<br>Magnetic Resonance in Chemistry, 2022, 60, 637-650. | 1.9 | 2         |
| 60 | NMR Relaxometry and Imaging of Dairy Products. , 2017, , 1-23.                                                                                       |     | 1         |
| 61 | Water Migration and Molecular Mobility in Cakes During Storage: An NMR Investigation. , 2008, , 125-128.                                             |     | 0         |