## Jinwen Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1834252/publications.pdf Version: 2024-02-01



LINIMEN ZHANC

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Wet-Spun Side-by-Side Electrically Conductive Composite Fibers. ACS Applied Electronic Materials, 2022, 4, 1979-1988.                                                                                                               | 2.0 | 11        |
| 2  | Construction and application of hybrid covalent adaptive network with non-conjugated<br>fluorescence, self-healing and Fe3+ ion sensing. Journal of Materials Research and Technology, 2022,<br>19, 1699-1710.                      | 2.6 | 2         |
| 3  | Improving Thermal Reprocessability of Commercial Flexible Polyurethane Foam by Vitrimer<br>Modification of the Hard Segments. ACS Applied Polymer Materials, 2022, 4, 5056-5067.                                                    | 2.0 | 8         |
| 4  | Recyclable CFRPs with extremely high <i>T</i> <sub>g</sub> : hydrothermal recyclability in pure water<br>and upcycling of the recyclates for new composite preparation. Journal of Materials Chemistry A,<br>2022, 10, 15623-15633. | 5.2 | 15        |
| 5  | Carbon Fiber Reinforced Epoxy Vitrimer: Robust Mechanical Performance and Facile Hydrothermal Decomposition in Pure Water. Macromolecular Rapid Communications, 2021, 42, e2000458.                                                 | 2.0 | 42        |
| 6  | Toward morphology development and impact strength of Co-continuous supertough dynamically vulcanized rubber toughened PLA blends: Effect of sulfur content. Polymer, 2021, 217, 123439.                                             | 1.8 | 32        |
| 7  | From Glassy Plastic to Ductile Elastomer: Vegetable Oil-Based UV-Curable Vitrimers and Their<br>Potential Use in 3D Printing. ACS Applied Polymer Materials, 2021, 3, 2470-2479.                                                    | 2.0 | 43        |
| 8  | Beyond biodegradation: Chemical upcycling of poly(lactic acid) plastic waste to methyl lactate catalyzed by quaternary ammonium fluoride. Journal of Catalysis, 2021, 402, 61-71.                                                   | 3.1 | 12        |
| 9  | Biobased miktoarm star copolymer from soybean oil, isosorbide, and caprolactone. Journal of Applied<br>Polymer Science, 2020, 137, 48281.                                                                                           | 1.3 | 7         |
| 10 | Catalyst-free vitrimer elastomers based on a dimer acid: robust mechanical performance, adaptability and hydrothermal recyclability. Green Chemistry, 2020, 22, 870-881.                                                            | 4.6 | 124       |
| 11 | A renewable dynamic covalent network based on itaconic anhydride crosslinked polyglycerol:<br>Adaptability, UV blocking and fluorescence. Chemical Engineering Journal, 2020, 385, 123960.                                          | 6.6 | 19        |
| 12 | Combined light- and heat-induced shape memory behavior of anthracene-based epoxy elastomers.<br>Scientific Reports, 2020, 10, 20214.                                                                                                | 1.6 | 13        |
| 13 | Shape memory Poly(lactic acid) binary blends with unusual fluorescence. Polymer, 2020, 209, 122980.                                                                                                                                 | 1.8 | 8         |
| 14 | Hempseed Oil-Based Covalent Adaptable Epoxy-Amine Network and Its Potential Use for<br>Room-Temperature Curable Coatings. ACS Sustainable Chemistry and Engineering, 2020, 8, 14964-14974.                                          | 3.2 | 51        |
| 15 | Preparation and Characterization of Electrospun Conductive Janus Nanofibers with Polyaniline. ACS<br>Applied Polymer Materials, 2020, 2, 2819-2829.                                                                                 | 2.0 | 19        |
| 16 | A facile strategy to construct vegetable oil-based, fire-retardant, transparent and mussel adhesive intumescent coating for wood substrates. Industrial Crops and Products, 2020, 154, 112628.                                      | 2.5 | 32        |
| 17 | Recent development of repairable, malleable and recyclable thermosetting polymers through dynamic transesterification. Polymer, 2020, 194, 122392.                                                                                  | 1.8 | 191       |
| 18 | Waste PET Chemical Processing to Terephthalic Amides and Their Effect on Asphalt Performance. ACS Sustainable Chemistry and Engineering, 2020, 8, 5615-5625.                                                                        | 3.2 | 44        |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Triethanolamine-Mediated Covalent Adaptable Epoxy Network: Excellent Mechanical Properties, Fast<br>Repairing, and Easy Recycling. Macromolecules, 2020, 53, 3110-3118.                                                            | 2.2 | 118       |
| 20 | Characteristics of bioepoxy based on waste cooking oil and lignin and its effects on asphalt binder.<br>Construction and Building Materials, 2020, 251, 118926.                                                                    | 3.2 | 27        |
| 21 | No Such Thing as Trash: A 3D-Printable Polymer Composite Composed of Oil-Extracted Spent Coffee<br>Grounds and Polylactic Acid with Enhanced Impact Toughness. ACS Sustainable Chemistry and<br>Engineering, 2019, 7, 15304-15310. | 3.2 | 44        |
| 22 | Conductive Bicomponent Fibers Containing Polyaniline Produced via Side-by-Side Electrospinning.<br>Polymers, 2019, 11, 954.                                                                                                        | 2.0 | 38        |
| 23 | Styrene-Free Soybean Oil Thermoset Composites Reinforced by Hybrid Fibers from Recycled and Natural Resources. ACS Sustainable Chemistry and Engineering, 2019, 7, 17808-17816.                                                    | 3.2 | 13        |
| 24 | Performance Evaluation of Hot Mix Biobinder. , 2019, , .                                                                                                                                                                           |     | 4         |
| 25 | Biodegradable Waste Frying Oil-Based Ethoxylated Esters as Highly Efficient Plasticizers for Poly(lactic acid). ACS Sustainable Chemistry and Engineering, 2019, 7, 15957-15965.                                                   | 3.2 | 34        |
| 26 | Preparation and toughening of mechanochemically modified lignin-based epoxy. Polymer, 2019, 183, 121859.                                                                                                                           | 1.8 | 29        |
| 27 | Glycerol Induced Catalystâ€Free Curing of Epoxy and Vitrimer Preparation. Macromolecular Rapid<br>Communications, 2019, 40, e1800889.                                                                                              | 2.0 | 108       |
| 28 | Hyperbranched Polymer Assisted Curing and Repairing of an Epoxy Coating. Industrial &<br>Engineering Chemistry Research, 2019, 58, 6466-6475.                                                                                      | 1.8 | 45        |
| 29 | Deep Eutectic Solvent Assisted Facile Synthesis of Lignin-Based Cryogel. Macromolecules, 2019, 52, 227-235.                                                                                                                        | 2.2 | 17        |
| 30 | Eco-friendly post-consumer cotton waste recycling for regenerated cellulose fibers. Carbohydrate<br>Polymers, 2019, 206, 141-148.                                                                                                  | 5.1 | 100       |
| 31 | A Highâ€Lignin ontent, Removable, and Glycolâ€Assisted Repairable Coating Based on Dynamic Covalent<br>Bonds. ChemSusChem, 2019, 12, 1049-1058.                                                                                    | 3.6 | 89        |
| 32 | Use of Hempseed-Oil-Derived Polyacid and Rosin-Derived Anhydride Acid as Cocuring Agents for Epoxy<br>Materials. ACS Sustainable Chemistry and Engineering, 2018, 6, 4016-4025.                                                    | 3.2 | 43        |
| 33 | Temperature and pH Responsive Hydrogels Using Methacrylated Lignosulfonate Cross-Linker:<br>Synthesis, Characterization, and Properties. ACS Sustainable Chemistry and Engineering, 2018, 6,<br>1763-1771.                         | 3.2 | 78        |
| 34 | Highly efficient and recyclable catalysts SnCl 2 – x H 3 PW 12 O 40 /AC with BrÃ,nsted and Lewis acid<br>sites for terephthalic acid esterification. Journal of the Taiwan Institute of Chemical Engineers, 2018,<br>86, 18-24.    | 2.7 | 10        |
| 35 | Manipulation of the properties of PLA nanocomposites by controlling the distribution of nanoclay via varying the acrylonitrile content in NBR rubber. Polymer Testing, 2018, 65, 313-321.                                          | 2.3 | 25        |
| 36 | Thiol–Ene Synthesis of Cysteine-Functionalized Lignin for the Enhanced Adsorption of Cu(II) and Pb(II).<br>Industrial & Engineering Chemistry Research, 2018, 57, 7872-7880.                                                       | 1.8 | 55        |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Catalytic Conversion of Biomass-Derived 1,2-Propanediol to Propylene Oxide over Supported Solid-Base Catalysts. ACS Omega, 2018, 3, 8718-8723.                                                                                       | 1.6 | 4         |
| 38 | Facile continuous production of soy peptide nanogels via nanoscale flash desolvation for drug entrapment. International Journal of Pharmaceutics, 2018, 549, 13-20.                                                                  | 2.6 | 14        |
| 39 | A Self-Healable High Glass Transition Temperature Bioepoxy Material Based on Vitrimer Chemistry.<br>Macromolecules, 2018, 51, 5577-5585.                                                                                             | 2.2 | 224       |
| 40 | A Catalyst-Free Epoxy Vitrimer System Based on Multifunctional Hyperbranched Polymer.<br>Macromolecules, 2018, 51, 6789-6799.                                                                                                        | 2.2 | 234       |
| 41 | A TCF-based colorimetric and fluorescent probe for palladium detection in an aqueous solution.<br>Tetrahedron Letters, 2018, 59, 2804-2808.                                                                                          | 0.7 | 19        |
| 42 | Preparation of a lignin-based vitrimer material and its potential use for recoverable adhesives. Green<br>Chemistry, 2018, 20, 2995-3000.                                                                                            | 4.6 | 222       |
| 43 | Preparation and Properties of Hydrogels Based on PEGylated Lignosulfonate Amine. ACS Omega, 2017, 2, 251-259.                                                                                                                        | 1.6 | 48        |
| 44 | One-pot synthesis of soy protein (SP)-poly(acrylic acid) (PAA) superabsorbent hydrogels via facile preparation of SP macromonomer. Industrial Crops and Products, 2017, 100, 117-125.                                                | 2.5 | 29        |
| 45 | Improving Grafting Efficiency of Dicarboxylic Anhydride Monomer on Polylactic Acid by Manipulating<br>Monomer Structure and Using Comonomer and Reducing Agent. Industrial & Engineering<br>Chemistry Research, 2017, 56, 3920-3927. | 1.8 | 16        |
| 46 | Properties of poly(butylene adipateâ€ <i>co</i> â€ŧerephthalate) and sunflower head residue<br>biocomposites. Journal of Applied Polymer Science, 2017, 134, .                                                                       | 1.3 | 26        |
| 47 | Clickable Synthesis of 1,2,4-Triazole Modified Lignin-Based Adsorbent for the Selective Removal of Cd(II). ACS Sustainable Chemistry and Engineering, 2017, 5, 4086-4093.                                                            | 3.2 | 71        |
| 48 | Mild chemical recycling of aerospace fiber/epoxy composite wastes and utilization of the decomposed resin. Polymer Degradation and Stability, 2017, 139, 20-27.                                                                      | 2.7 | 107       |
| 49 | Polylactide (PLA) and acrylonitrile butadiene rubber (NBR) blends: The effect of ACN content on morphology, compatibility and mechanical properties. Polymer, 2017, 115, 37-44.                                                      | 1.8 | 80        |
| 50 | Design of green zincâ€based thermal stabilizers derived from tung oil fatty acid and study of thermal stabilization for PVC. Journal of Applied Polymer Science, 2017, 134, .                                                        | 1.3 | 19        |
| 51 | Eugenol-Derived Biobased Epoxy: Shape Memory, Repairing, and Recyclability. Macromolecules, 2017, 50, 8588-8597.                                                                                                                     | 2.2 | 316       |
| 52 | Selective cleavage of ester linkages of anhydride-cured epoxy using a benign method and reuse of the decomposed polymer in new epoxy preparation. Green Chemistry, 2017, 19, 4364-4372.                                              | 4.6 | 113       |
| 53 | Molecular simulation of reverse osmosis for heavy metal ions using functionalized nanoporous graphenes. Computational Materials Science, 2017, 139, 65-74.                                                                           | 1.4 | 71        |
| 54 | Biodegradable and Biobased Polymers. , 2017, , 127-143.                                                                                                                                                                              |     | 30        |

4

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A Novel and Formaldehyde-Free Preparation Method for Lignin Amine and Its Enhancement for Soy<br>Protein Adhesive. Journal of Polymers and the Environment, 2017, 25, 599-605.                                          | 2.4 | 24        |
| 56 | Molecular dynamics simulation of the mechanical properties of multilayer graphene oxide nanosheets. RSC Advances, 2017, 7, 55005-55011.                                                                                 | 1.7 | 18        |
| 57 | Green Epoxy Resin System Based on Lignin and Tung Oil and Its Application in Epoxy Asphalt. ACS<br>Sustainable Chemistry and Engineering, 2016, 4, 2754-2761.                                                           | 3.2 | 141       |
| 58 | Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric<br>Phenolic Compounds. Chemistry - A European Journal, 2016, 22, 10884-10891.                                               | 1.7 | 42        |
| 59 | Mechanochemical Oleation of Lignin Through Ball Milling and Properties of its Blends with PLA.<br>ChemistrySelect, 2016, 1, 3449-3454.                                                                                  | 0.7 | 18        |
| 60 | A self-crosslinking thermosetting monomer with both epoxy and anhydride groups derived from tung<br>oil fatty acids: Synthesis and properties. European Polymer Journal, 2015, 70, 45-54.                               | 2.6 | 40        |
| 61 | Poly(lactic acid)/polyoxymethylene blends: Morphology, crystallization, rheology, and thermal mechanical properties. Polymer, 2015, 69, 103-109.                                                                        | 1.8 | 46        |
| 62 | Preparation and properties of hydrogels based on PEG and isosorbide building blocks with phosphate<br>linkages. Polymer, 2015, 78, 212-218.                                                                             | 1.8 | 10        |
| 63 | Effects of a novel phosphorus–nitrogen flame retardant on rosin-based rigid polyurethane foams.<br>Polymer Degradation and Stability, 2015, 120, 427-434.                                                               | 2.7 | 98        |
| 64 | Developing Vegetable Oil-Based High Performance Thermosetting Resins. ACS Symposium Series, 2014, ,<br>299-313.                                                                                                         | 0.5 | 2         |
| 65 | Functionalized graphenes with polymer toughener as novel interface modifier for property-tailored polylactic acid/graphene nanocomposites. Polymer, 2014, 55, 6381-6389.                                                | 1.8 | 51        |
| 66 | Mixed calcium and zinc salts of dicarboxylic acids derived from rosin and dipentene: preparation and thermal stabilization for PVC. RSC Advances, 2014, 4, 63576-63585.                                                 | 1.7 | 33        |
| 67 | Partial depolymerization of enzymolysis lignin via mild hydrogenolysis over Raney Nickel. Bioresource<br>Technology, 2014, 155, 422-426.                                                                                | 4.8 | 42        |
| 68 | Fiber Spinning of Polyacrylonitrile Grafted Soy Protein in an Ionic Liquid/DMSO Mixture Solvent.<br>Journal of Polymers and the Environment, 2014, 22, 17-26.                                                           | 2.4 | 16        |
| 69 | Use of eugenol and rosin as feedstocks for biobased epoxy resins and study of curing and performance properties. Polymer International, 2014, 63, 760-765.                                                              | 1.6 | 143       |
| 70 | Study of green epoxy resins derived from renewable cinnamic acid and dipentene: synthesis, curing and properties. RSC Advances, 2014, 4, 8525.                                                                          | 1.7 | 62        |
| 71 | Effects of Polyoxymethylene as a Polymeric Nucleating Agent on the Isothermal Crystallization and<br>Visible Transmittance of Poly(lactic acid). Industrial & Engineering Chemistry Research, 2014, 53,<br>16754-16762. | 1.8 | 19        |
| 72 | Enhanced melt free radical grafting efficiency of polyethylene using a novel redox initiation method.<br>RSC Advances, 2014, 4, 26425.                                                                                  | 1.7 | 15        |

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Synthesis and fire properties of rigid polyurethane foams made from a polyol derived from melamine and cardanol. Polymer Degradation and Stability, 2014, 110, 27-34.                            | 2.7 | 85        |
| 74 | Use of Polycarboxylic Acid Derived from Partially Depolymerized Lignin As a Curing Agent for Epoxy<br>Application. ACS Sustainable Chemistry and Engineering, 2014, 2, 188-193.                  | 3.2 | 95        |
| 75 | Preparation of a new liquid thermal stabilizer from rosin and fatty acid and study of the properties of the stabilized PVC. Polymer Degradation and Stability, 2014, 109, 129-136.               | 2.7 | 27        |
| 76 | Epoxy Monomers Derived from Tung Oil Fatty Acids and Its Regulable Thermosets Cured in Two<br>Synergistic Ways. Biomacromolecules, 2014, 15, 837-843.                                            | 2.6 | 70        |
| 77 | Manipulating Dispersion and Distribution of Graphene in PLA through Novel Interface Engineering for<br>Improved Conductive Properties. ACS Applied Materials & Interfaces, 2014, 6, 14069-14075. | 4.0 | 77        |
| 78 | Effects of Catalyst Type and Reaction Parameters on One-Step Acrylation of Soybean Oil. ACS Sustainable Chemistry and Engineering, 2014, 2, 181-187.                                             | 3.2 | 33        |
| 79 | Chiral ionic liquid crystals with a bulky rigid core from renewable camphorsulfonic acid. RSC Advances, 2014, 4, 25334-25340.                                                                    | 1.7 | 8         |
| 80 | Effect of Interfacial Modifiers on Mechanical and Physical Properties of the PHB Composite with High<br>Wood Flour Content. Journal of Polymers and the Environment, 2013, 21, 631-639.          | 2.4 | 31        |
| 81 | Preparation of biobased epoxies using tung oil fatty acid-derived C21 diacid and C22 triacid and study of epoxy properties. Green Chemistry, 2013, 15, 2466.                                     | 4.6 | 97        |
| 82 | lonic liquid-assisted exfoliation of graphite oxide for simultaneous reduction and functionalization to graphenes with improved properties. Journal of Materials Chemistry A, 2013, 1, 2663.     | 5.2 | 61        |
| 83 | Biodegradable Polymers and Polymer Blends. , 2013, , 109-128.                                                                                                                                    |     | 27        |
| 84 | Exploration of the complementary properties of biobased epoxies derived from rosin diacid and dimer fatty acid for balanced performance. Industrial Crops and Products, 2013, 49, 497-506.       | 2.5 | 63        |
| 85 | One-step acrylation of soybean oil (SO) for the preparation of SO-based macromonomers. Green Chemistry, 2013, 15, 641.                                                                           | 4.6 | 59        |
| 86 | Effects of Metal Ion Type on Ionomer-Assisted Reactive Toughening of Poly(lactic acid). Industrial<br>& Engineering Chemistry Research, 2013, 52, 4787-4793.                                     | 1.8 | 26        |
| 87 | Performance enhancement of poly (lactic acid)/soy protein concentrate blends by promoting formation of network structure. Green Materials, 2013, 1, 176-185.                                     | 1.1 | 3         |
| 88 | Plant Oil-Based Curing Agents for Epoxies. ACS Symposium Series, 2012, , 225-234.                                                                                                                | 0.5 | 0         |
| 89 | Toughening Modification of Poly(lactic acid) via Melt Blending. ACS Symposium Series, 2012, , 27-46.                                                                                             | 0.5 | 7         |
| 90 | Compatibilizing Effects of Maleated Poly(lactic acid) (PLA) on Properties of PLA/Soy Protein<br>Composites. Industrial & Engineering Chemistry Research, 2012, 51, 7786-7792.                    | 1.8 | 79        |

| #   | Article                                                                                                                                                                                    | IF                | CITATIONS     |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|
| 91  | Biodegradable composites from polyester and sugar beet pulp with antimicrobial coating for food packaging. Journal of Applied Polymer Science, 2012, 126, E362.                            | 1.3               | 23            |
| 92  | Effects of reactive blending temperature on impact toughness of poly(lactic acid) ternary blends.<br>Polymer, 2012, 53, 272-276.                                                           | 1.8               | 57            |
| 93  | Effects of ionomer characteristics on reactions and properties of poly(lactic acid) ternary blends prepared by reactive blending. Polymer, 2012, 53, 2476-2484.                            | 1.8               | 49            |
| 94  | Glutaraldehyde treatment of bacterial cellulose/fibrin composites: impact on morphology, tensile and viscoelastic properties. Cellulose, 2012, 19, 127-137.                                | 2.4               | 62            |
| 95  | Utilization of Pectin Extracted Sugar Beet Pulp for Composite Application. Journal of Biobased<br>Materials and Bioenergy, 2012, 6, .                                                      | 0.1               | 9             |
| 96  | Interaction of Microstructure and Interfacial Adhesion on Impact Performance of Polylactide (PLA)<br>Ternary Blends. Macromolecules, 2011, 44, 1513-1522.                                  | 2.2               | 283           |
| 97  | Morphology and Properties of Thermoplastic Sugar Beet Pulp and Poly(butylene) Tj ETQq1 1 0.784314 rgBT /Ove                                                                                | rlock 10 T<br>1.8 | f 50 502 Td ( |
| 98  | Biodegradable and Biobased Polymers. , 2011, , 145-158.                                                                                                                                    |                   | 7             |
| 99  | Development of Biodegradable Polymer Composites. ACS Symposium Series, 2011, , 367-391.                                                                                                    | 0.5               | 2             |
| 100 | Study of Effects of Processing Aids on Properties of Poly(lactic acid)/Soy Protein Blends. Journal of Polymers and the Environment, 2011, 19, 239-247.                                     | 2.4               | 15            |
| 101 | Preparation and Properties of Water and Glycerol-plasticized Sugar Beet Pulp Plastics. Journal of<br>Polymers and the Environment, 2011, 19, 559-567.                                      | 2.4               | 28            |
| 102 | Never-dried bacterial cellulose/fibrin composites: preparation, morphology and mechanical properties. Cellulose, 2011, 18, 631-641.                                                        | 2.4               | 25            |
| 103 | Study of dextrin-derived curing agent for waterborne epoxy adhesive. Carbohydrate Polymers, 2011, 83, 1180-1184.                                                                           | 5.1               | 27            |
| 104 | Research progress in toughening modification of poly(lactic acid). Journal of Polymer Science, Part B:<br>Polymer Physics, 2011, 49, 1051-1083.                                            | 2.4               | 620           |
| 105 | Extrusion Foaming of Poly (lactic acid)/Soy Protein Concentrate Blends. Macromolecular Materials and Engineering, 2011, 296, 835-842.                                                      | 1.7               | 19            |
| 106 | Different Effects of Water and Glycerol on Morphology and Properties of Poly(lactic acid)/Soy<br>Protein Concentrate Blends. Macromolecular Materials and Engineering, 2010, 295, 123-129. | 1.7               | 9             |
| 107 | In-situ poly(butylene adipate-co-terephthalate)/soy protein concentrate composites: Effects of compatibilization and composition on properties. Polymer, 2010, 51, 1812-1819.              | 1.8               | 51            |
| 108 | Rosin-derived imide-diacids as epoxy curing agents for enhanced performance. Bioresource<br>Technology, 2010, 101, 2520-2524.                                                              | 4.8               | 130           |

| #   | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Highâ€performance biobased epoxy derived from rosin. Polymer International, 2010, 59, 607-609.                                                                                                                            | 1.6 | 31        |
| 110 | Biodegradable Poly(butylene adipateâ€ <i>co</i> â€ŧerephthalate) Films Incorporated with Nisin:<br>Characterization and Effectiveness againstâ€, <i>Listeria innocua</i> . Journal of Food Science, 2010, 75,<br>E215-24. | 1.5 | 82        |
| 111 | Super Toughened Poly(lactic acid) Ternary Blends by Simultaneous Dynamic Vulcanization and<br>Interfacial Compatibilization. Macromolecules, 2010, 43, 6058-6066.                                                         | 2.2 | 279       |
| 112 | Effects of Plasticization and Shear Stress on Phase Structure Development and Properties of Soy<br>Protein Blends. ACS Applied Materials & Interfaces, 2010, 2, 3324-3332.                                                | 4.0 | 30        |
| 113 | Development of Novel Soy Protein-Based Polymer Blends. ACS Symposium Series, 2010, , 45-57.                                                                                                                               | 0.5 | 3         |
| 114 | Reinforcing and Toughening Effects of Bamboo Pulp Fiber on<br>Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyvalerate) Fiber Composites. Industrial & Engineering<br>Chemistry Research, 2010, 49, 572-577.                  | 1.8 | 55        |
| 115 | Synergetic Effect of Dual Compatibilizers on in Situ Formed Poly(Lactic Acid)/Soy Protein Composites.<br>Industrial & Engineering Chemistry Research, 2010, 49, 6399-6406.                                                | 1.8 | 47        |
| 116 | Novel High‣trength Thermoplastic Starch Reinforced by in situ Poly(lactic acid) Fibrillation.<br>Macromolecular Materials and Engineering, 2009, 294, 301-305.                                                            | 1.7 | 75        |
| 117 | Synthesis of rosinâ€based flexible anhydrideâ€type curing agents and properties of the cured epoxy.<br>Polymer International, 2009, 58, 1435-1441.                                                                        | 1.6 | 91        |
| 118 | A new approach for morphology control of poly(butylene adipate-co-terephthalate) and soy protein blends. Polymer, 2009, 50, 3770-3777.                                                                                    | 1.8 | 49        |
| 119 | Properties of Poly(lactic acid)/Poly(butylene adipate- <i>co</i> -terephthalate)/Nanoparticle Ternary<br>Composites. Industrial & Engineering Chemistry Research, 2009, 48, 7594-7602.                                    | 1.8 | 123       |
| 120 | Rosin-based acid anhydrides as alternatives to petrochemical curing agents. Green Chemistry, 2009, 11, 1018.                                                                                                              | 4.6 | 221       |
| 121 | Study of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/Bamboo Pulp Fiber Composites: Effects of Nucleation Agent and Compatibilizer. Journal of Polymers and the Environment, 2008, 16, 83-93.                      | 2.4 | 84        |
| 122 | Synthesis of biobased epoxy and curing agents using rosin and the study of cure reactions. Green Chemistry, 2008, 10, 1190.                                                                                               | 4.6 | 107       |
| 123 | Performance Enhancement of Poly(lactic acid) and Sugar Beet Pulp Composites by Improving<br>Interfacial Adhesion and Penetration. Industrial & Engineering Chemistry Research, 2008, 47,<br>8667-8675.                    | 1.8 | 60        |
| 124 | Study of the Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Cellulose Nanowhisker Composites<br>Prepared by Solution Casting and Melt Processing. Journal of Composite Materials, 2008, 42, 2629-2645.                      | 1.2 | 181       |
| 125 | Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: Reinforcing effects and toughening mechanisms. Polymer, 2007, 48, 7632-7644.                                           | 1.8 | 358       |
| 126 | Flexural properties of surface reinforced wood/plastic deck board. Polymer Engineering and Science, 2007, 47, 281-288.                                                                                                    | 1.5 | 35        |

| #   | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Comparison of different nucleating agents on crystallization of<br>poly(3-hydroxybutyrate-co-3-hydroxyvalerates). Journal of Polymer Science, Part B: Polymer Physics,<br>2007, 45, 1564-1577.                         | 2.4 | 63        |
| 128 | Study of Biodegradable Polylactide/Poly(butylene adipate-co-terephthalate) Blends.<br>Biomacromolecules, 2006, 7, 199-207.                                                                                             | 2.6 | 828       |
| 129 | Morphology and Properties of Soy Protein and Polylactide Blends. Biomacromolecules, 2006, 7, 1551-1561.                                                                                                                | 2.6 | 159       |
| 130 | The influence of fatty acid coating on the rheological and mechanical properties of thermoplastic polyurethane (TPU)/nano-sized precipitated calcium carbonate (NPCC) composites. Polymer Bulletin, 2006, 57, 575-586. | 1.7 | 16        |
| 131 | Rheological properties and interfacial slip of a multilayer structure under dynamic shear. Journal of<br>Polymer Science, Part B: Polymer Physics, 2005, 43, 2683-2693.                                                | 2.4 | 8         |
| 132 | POLYMER NANOCOMPOSITES: SYNTHETIC AND NATURAL FILLERS A REVIEW. Maderas: Ciencia Y Tecnologia, 2005, 7, .                                                                                                              | 0.7 | 133       |
| 133 | Reverse temperature injection molding of Biopol? and effect on its properties. Journal of Applied Polymer Science, 2004, 94, 483-491.                                                                                  | 1.3 | 23        |
| 134 | Mechanical and thermal properties of extruded soy protein sheets. Polymer, 2001, 42, 2569-2578.                                                                                                                        | 1.8 | 295       |
| 135 | Control of unsaturated fatty acid substituents in emulsans. Carbohydrate Polymers, 1999, 39, 79-84.                                                                                                                    | 5.1 | 18        |
| 136 | Surface properties of emulsan-analogs. Journal of Chemical Technology and Biotechnology, 1999, 74, 759-765.                                                                                                            | 1.6 | 15        |
| 137 | Bioengineering of emulsifier structure: emulsan analogs. Canadian Journal of Microbiology, 1997, 43,<br>384-390.                                                                                                       | 0.8 | 30        |
| 138 | Incorporation of 2-hydroxyl fatty acids by Acinetobacter calcoaceticus RAG-1 to tailor emulsan structure. International Journal of Biological Macromolecules, 1997, 20, 9-21.                                          | 3.6 | 19        |