Dipankar Srimani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1833713/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Well-defined manganese complex catalyzed dehydrogenative synthesis of quinazolin-4(3 <i>H</i>)-ones and 3,4-dihydro-2 <i>H</i> -1,2,4-benzothiadiazine 1,1-dioxides. Catalysis Science and Technology, 2022, 12, 3202-3208.	4.1	13
2	Well-Defined NNS-Mn Complex Catalyzed Selective Synthesis of C-3 Alkylated Indoles and Bisindolylmethanes Using Alcohols. Journal of Organic Chemistry, 2022, 87, 3989-4000.	3.2	20
3	Ru Doped Hydrotalcite Catalyzed Borrowing Hydrogen-Mediated N-Alkylation of Benzamides, Sulfonamides, and Dehydrogenative Synthesis of Quinazolinones. Journal of Organic Chemistry, 2022, 87, 5556-5567.	3.2	11
4	Wellâ€Defined Niâ ''SNS Complex Catalysed Borrowing Hydrogenative αâ€Alkylation of Ketones and Dehydrogenative Synthesis of Quinolines. Advanced Synthesis and Catalysis, 2022, 364, 2429-2437.	4.3	19
5	Manganese catalyzed switchable <i>C</i> -alkylation/alkenylation of fluorenes and indene with alcohols. Chemical Communications, 2021, 57, 10363-10366.	4.1	20
6	Visibleâ€Lightâ€Induced Manganeseâ€Catalyzed Reactions: Present Approach and Future Prospects. Advanced Synthesis and Catalysis, 2021, 363, 2969-2995.	4.3	31
7	Synthesis of 1,8-Dioxo-decahydroacridine Derivatives <i>via</i> Ru-Catalyzed Acceptorless Dehydrogenative Multicomponent Reaction. Journal of Organic Chemistry, 2021, 86, 9733-9743.	3.2	9
8	Multicomponent Dehydrogenative Synthesis of Acridineâ€1,8â€diones Catalyzed by Ruâ€doped Hydrotalcite. Asian Journal of Organic Chemistry, 2021, 10, 2195-2204.	2.7	6
9	Recent Progress in the Synthesis of Heterocycles through Base Metalâ€Catalyzed Acceptorless Dehydrogenative and Borrowing Hydrogen Approach. European Journal of Organic Chemistry, 2021, 2021, 3690-3720.	2.4	37
10	Ru-Catalyzed Selective Catalytic Methylation and Methylenation Reaction Employing Methanol as the C1 Source. Journal of Organic Chemistry, 2021, 86, 10544-10554.	3.2	37
11	Redox Noninnocent Nature of Acridine-Based Pincer Complexes of 3d Metals and C–C Bond Formation. Organometallics, 2020, 39, 279-285.	2.3	22
12	Ruthenium Pincer Complex Catalyzed Selective Synthesis of Câ€3 Alkylated Indoles and Bisindolylmethanes Directly from Indoles and Alcohols. Advanced Synthesis and Catalysis, 2020, 362, 2902-2910.	4.3	55
13	Sustainable Synthesis of Quinazoline and 2-Aminoquinoline via Dehydrogenative Coupling of 2-Aminobenzyl Alcohol and Nitrile Catalyzed by Phosphine-Free Manganese Pincer Complex. Organic Letters, 2019, 21, 3223-3227.	4.6	88
14	Phosphine-Free Well-Defined Mn(I) Complex-Catalyzed Synthesis of Amine, Imine, and 2,3-Dihydro-1 <i>H</i> -perimidine via Hydrogen Autotransfer or Acceptorless Dehydrogenative Coupling of Amine and Alcohol. Organometallics, 2019, 38, 1815-1825.	2.3	80
15	Acceptorless dehydrogenative construction of Cî€N and Cî€C bonds through catalytic aza-Wittig and Wittig reactions in the presence of an air-stable ruthenium pincer complex. Dalton Transactions, 2019, 48, 6501-6512.	3.3	25
16	Selective Synthesis of 2-Substituted and 1,2-Disubstituted Benzimidazoles Directly from Aromatic Diamines and Alcohols Catalyzed by Molecularly Defined Nonphosphine Manganese(I) Complex. Journal of Organic Chemistry, 2018, 83, 9553-9560.	3.2	128
17	Phosphine free Mn-complex catalysed dehydrogenative C–C and C–heteroatom bond formation: a sustainable approach to synthesize quinoxaline, pyrazine, benzothiazole and quinoline derivatives. Chemical Communications, 2018, 54, 10582-10585.	4.1	144
18	Lowâ€Pressure Hydrogenation of Nitriles to Primary Amines Catalyzed by Ruthenium Pincer Complexes. Scope and mechanism. ChemCatChem, 2017, 9, 559-563.	3.7	36

DIPANKAR SRIMANI

#	Article	IF	CITATIONS
19	Cobaltâ€Catalyzed Hydrogenation of Esters to Alcohols: Unexpected Reactivity Trend Indicates Ester Enolate Intermediacy. Angewandte Chemie, 2015, 127, 12534-12537.	2.0	56
20	Selective Hydrogenation of Nitriles to Primary Amines Catalyzed by a Cobalt Pincer Complex. Journal of the American Chemical Society, 2015, 137, 8888-8891.	13.7	237
21	Cobaltâ€Catalyzed Hydrogenation of Esters to Alcohols: Unexpected Reactivity Trend Indicates Ester Enolate Intermediacy. Angewandte Chemie - International Edition, 2015, 54, 12357-12360.	13.8	166
22	Direct Synthesis of Secondary Amines From Alcohols and Ammonia Catalyzed by a Ruthenium Pincer Complex. Catalysis Letters, 2015, 145, 139-144.	2.6	58
23	Direct Catalytic Olefination of Alcohols with Sulfones. Angewandte Chemie - International Edition, 2014, 53, 11092-11095.	13.8	58
24	Direct synthesis of pyridines and quinolines by coupling of γ-amino-alcohols with secondary alcohols liberating H2 catalyzed by ruthenium pincer complexes. Chemical Communications, 2013, 49, 6632.	4.1	175
25	Formation of Tertiary Amides and Dihydrogen by Dehydrogenative Coupling of Primary Alcohols with Secondary Amines Catalyzed by Ruthenium Bipyridineâ€Based Pincer Complexes. Advanced Synthesis and Catalysis, 2013, 355, 2525-2530.	4.3	81
26	Iron Pincer Complex Catalyzed, Environmentally Benign, <i>E</i> â€Selective Semiâ€Hydrogenation of Alkynes. Angewandte Chemie - International Edition, 2013, 52, 14131-14134.	13.8	215
27	Direct Synthesis of Pyrroles by Dehydrogenative Coupling of βâ€Aminoalcohols with Secondary Alcohols Catalyzed by Ruthenium Pincer Complexes. Angewandte Chemie - International Edition, 2013, 52, 4012-4015.	13.8	268
28	Palladium nanoparticle catalysis: borylation of aryl and benzyl halides and one-pot biaryl synthesis via sequential borylation-Suzuki–Miyaura coupling. Green Chemistry, 2012, 14, 661.	9.0	50
29	Ruthenium Pincerâ€Catalyzed Crossâ€Dehydrogenative Coupling of Primary Alcohols with Secondary Alcohols under Neutral Conditions. Advanced Synthesis and Catalysis, 2012, 354, 2403-2406.	4.3	109
30	Catalytic coupling of nitriles with amines to selectively form imines under mild hydrogen pressure. Chemical Communications, 2012, 48, 11853.	4.1	115
31	A new functionalized mesoporous matrix supported Pd(ii)-Schiff base complex: an efficient catalyst for the Suzuki–Miyaura coupling reaction. Dalton Transactions, 2010, 39, 6395.	3.3	133
32	Palladium Nanoparticle Catalyzed Hiyama Coupling Reaction of Benzyl Halides. Journal of Organic Chemistry, 2010, 75, 4296-4299.	3.2	92
33	Size controlled synthesis of Pd nanoparticles in water and their catalytic application in C–C coupling reactions. Tetrahedron, 2009, 65, 4367-4374.	1.9	136
34	Benzaldimines as ligands for palladium in Suzuki–Miyaura reactions. Tetrahedron Letters, 2008, 49, 6304-6307.	1.4	36
35	Convenient Synthesis of Palladium Nanoparticles and Catalysis of Hiyama Coupling Reaction in Water. Organic Letters, 2007, 9, 3639-3642.	4.6	87