Zhiwei Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1833667/publications.pdf Version: 2024-02-01

7HIMEL FANC

#	Article	IF	CITATIONS
1	Metallic Co ₄ N Porous Nanowire Arrays Activated by Surface Oxidation as Electrocatalysts for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2015, 54, 14710-14714.	7.2	684
2	Hydrogels and Hydrogel-Derived Materials for Energy and Water Sustainability. Chemical Reviews, 2020, 120, 7642-7707.	23.0	646
3	A Wearable Transient Pressure Sensor Made with MXene Nanosheets for Sensitive Broad-Range Human–Machine Interfacing. Nano Letters, 2019, 19, 1143-1150.	4.5	538
4	Dual Tuning of Ni–Co–A (A = P, Se, O) Nanosheets by Anion Substitution and Holey Engineering for Efficient Hydrogen Evolution. Journal of the American Chemical Society, 2018, 140, 5241-5247.	6.6	461
5	Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nature Catalysis, 2021, 4, 615-622.	16.1	336
6	Structural Engineering of 2D Nanomaterials for Energy Storage and Catalysis. Advanced Materials, 2018, 30, e1706347.	11.1	297
7	Holey 2D Nanomaterials for Electrochemical Energy Storage. Advanced Energy Materials, 2018, 8, 1702179.	10.2	293
8	Metallic Transition Metal Selenide Holey Nanosheets for Efficient Oxygen Evolution Electrocatalysis. ACS Nano, 2017, 11, 9550-9557.	7.3	273
9	Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nature Sustainability, 2021, 4, 868-876.	11.5	264
10	Cobalt nitrides as a class of metallic electrocatalysts for the oxygen evolution reaction. Inorganic Chemistry Frontiers, 2016, 3, 236-242.	3.0	243
11	A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy and Environmental Science, 2021, 14, 3522-3531.	15.6	243
12	High-performance room-temperature sodium–sulfur battery enabled by electrocatalytic sodium polysulfides full conversion. Energy and Environmental Science, 2020, 13, 562-570.	15.6	163
13	Two-Dimensional Holey Co ₃ O ₄ Nanosheets for High-Rate Alkali-Ion Batteries: From Rational Synthesis to in Situ Probing. Nano Letters, 2017, 17, 3907-3913.	4.5	158
14	Rational Design of Rhodium–Iridium Alloy Nanoparticles as Highly Active Catalysts for Acidic Oxygen Evolution. ACS Nano, 2019, 13, 13225-13234.	7.3	151
15	Rayleigh-Instability-Induced Bismuth Nanorod@Nitrogen-Doped Carbon Nanotubes as A Long Cycling and High Rate Anode for Sodium-Ion Batteries. Nano Letters, 2019, 19, 1998-2004.	4.5	142
16	Local Builtâ€In Electric Field Enabled in Carbonâ€Doped Co ₃ O ₄ Nanocrystals for Superior Lithiumâ€Ion Storage. Advanced Functional Materials, 2018, 28, 1705951.	7.8	128
17	Double-Network Nanostructured Hydrogel-Derived Ultrafine Sn–Fe Alloy in Three-Dimensional Carbon Framework for Enhanced Lithium Storage. Nano Letters, 2018, 18, 3193-3198.	4.5	113
18	Effective Interlayer Engineering of Two-Dimensional VOPO ₄ Nanosheets via Controlled Organic Intercalation for Improving Alkali Ion Storage. Nano Letters, 2017, 17, 6273-6279.	4.5	102

Zhiwei Fang

#	Article	IF	CITATIONS
19	A Surface‣trained and Geometryâ€Tailored Nanoreactor that Promotes Ammonia Electrosynthesis. Angewandte Chemie - International Edition, 2020, 59, 22610-22616.	7.2	100
20	Probing Enhanced Site Activity of Co–Fe Bimetallic Subnanoclusters Derived from Dual Cross-Linked Hydrogels for Oxygen Electrocatalysis. ACS Energy Letters, 2019, 4, 1793-1802.	8.8	99
21	Gelâ€Derived Amorphous Bismuth–Nickel Alloy Promotes Electrocatalytic Nitrogen Fixation via Optimizing Nitrogen Adsorption and Activation. Angewandte Chemie - International Edition, 2021, 60, 4275-4281.	7.2	90
22	Porous Two-dimensional Iron-Cyano Nanosheets for High-rate Electrochemical Nitrate Reduction. ACS Nano, 2022, 16, 1072-1081.	7.3	89
23	Supramolecular confinement of single Cu atoms in hydrogel frameworks for oxygen reduction electrocatalysis with high atom utilization. Materials Today, 2020, 35, 78-86.	8.3	88
24	Boosting Electrocatalytic Ammonia Production through Mimicking "π Back-Donation― CheM, 2020, 6, 2690-2702.	5.8	88
25	Gel Electrocatalysts: An Emerging Material Platform for Electrochemical Energy Conversion. Advanced Materials, 2020, 32, e2003191.	11.1	78
26	Hierarchical nanoarchitectured hybrid electrodes based on ultrathin MoSe ₂ nanosheets on 3D ordered macroporous carbon frameworks for high-performance sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 2843-2850.	5.2	69
27	Understanding Thickness-Dependent Transport Kinetics in Nanosheet-Based Battery Electrodes. Chemistry of Materials, 2020, 32, 1684-1692.	3.2	68
28	Inorganic Gel-Derived Metallic Frameworks Enabling High-Performance Silicon Anodes. Nano Letters, 2019, 19, 6292-6298.	4.5	63
29	Defect engineering of metal–oxide interface for proximity of photooxidation and photoreduction. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10232-10237.	3.3	63
30	Two-Dimensional Holey Nanoarchitectures Created by Confined Self-Assembly of Nanoparticles <i>via</i> Block Copolymers: From Synthesis to Energy Storage Property. ACS Nano, 2018, 12, 820-828.	7.3	62
31	Emerging Electrochemical Techniques for Probing Site Behavior in Single-Atom Electrocatalysts. Accounts of Chemical Research, 2022, 55, 759-769.	7.6	58
32	Inorganic Cyanogels and Their Derivatives for Electrochemical Energy Storage and Conversion. , 2019, 1, 158-170.		57
33	Significantly Improving Lithium-Ion Transport via Conjugated Anion Intercalation in Inorganic Layered Hosts. ACS Nano, 2018, 12, 8670-8677.	7.3	54
34	Heterogeneous Molten Salt Design Strategy toward Coupling Cobalt–Cobalt Oxide and Carbon for Efficient Energy Conversion and Storage. Advanced Energy Materials, 2018, 8, 1800762.	10.2	51
35	Revealing the Critical Factor in Metal Sulfide Anode Performance in Sodiumâ€ion Batteries: An Investigation of Polysulfide Shuttling Issues. Small Methods, 2020, 4, 1900673.	4.6	47
36	A mini review on two-dimensional nanomaterial assembly. Nano Research, 2020, 13, 1179-1190.	5.8	36

Zhiwei Fang

#	Article	IF	CITATIONS
37	General Synthetic Strategy for Pomegranate-like Transition-Metal Phosphides@N-Doped Carbon Nanostructures with High Lithium Storage Capacity. , 2019, 1, 265-271.		35
38	Hybrid Organic–Inorganic Gel Electrocatalyst for Stable Acidic Water Oxidation. ACS Nano, 2019, 13, 14368-14376.	7.3	34
39	Multifunctional hydrogels for sustainable energy and environment. Polymer International, 2021, 70, 1425-1432.	1.6	33
40	General Facet-Controlled Synthesis of Single-Crystalline {010}-Oriented LiMPO ₄ (M = Mn,) Tj ETQ	q0 0,0 rgB 3.2	T /Overlock 10
41	Mo2C@3D ultrathin macroporous carbon realizing efficient and stable nitrogen fixation. Science China Chemistry, 2020, 63, 1570-1577.	4.2	27
42	Chemically Binding Scaffolded Anodes with 3D Graphene Architectures Realizing Fast and Stable Lithium Storage. Research, 2019, 2019, 8393085.	2.8	26
43	A Surfaceâ€Strained and Geometryâ€Tailored Nanoreactor that Promotes Ammonia Electrosynthesis. Angewandte Chemie, 2020, 132, 22799-22805.	1.6	23
44	Ammonia electrosynthesis on single-atom catalysts: Mechanistic understanding and recent progress. Chemical Physics Reviews, 2021, 2, .	2.6	17
45	Single atom catalyst towards ammonia synthesis at mild conditions. Science China Chemistry, 2018, 61, 1045-1046.	4.2	10
46	Gelâ€Derived Amorphous Bismuth–Nickel Alloy Promotes Electrocatalytic Nitrogen Fixation via Optimizing Nitrogen Adsorption and Activation. Angewandte Chemie, 2021, 133, 4321-4327.	1.6	10
47	General Synthesis of Large Inorganic Nanosheets via 2D Confined Assembly of Nanoparticles. ACS Central Science, 2022, 8, 627-635.	5.3	7
48	Rücktitelbild: A Surfaceâ€6trained and Geometryâ€Tailored Nanoreactor that Promotes Ammonia	1.6	0

RA¼ cktitelbild: A Surfaceâ€Strained and Geometryâ€Tailored Nanoreactor that Promotes Ammonia Electrosynthesis (Angew. Chem. 50/2020). Angewandte Chemie, 2020, 132, 22992-22992. 48