Yuri Bedjanian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/183366/publications.pdf

Version: 2024-02-01

64 1,118 19 31
papers citations h-index g-index

64 64 64 905 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Experimental Study of the Reaction of O(³ P) with Carbonyl Sulfide between 220 and 960 K. Journal of Physical Chemistry A, 2022, 126, 4080-4086.	2.5	3
2	Rate constant and products of the reaction of O(³ P) atoms with thiirane over the temperature range 220–950ÂK. International Journal of Chemical Kinetics, 2022, 54, 552-558.	1.6	2
3	Rate constants for the reactions of F atoms with H ₂ and D ₂ over the temperature range 220â€960ÂK. International Journal of Chemical Kinetics, 2021, 53, 527-535.	1.6	9
4	Rate Constant of the Reaction of OH Radicals with HBr over the Temperature Range 235–960 K. Journal of Physical Chemistry A, 2021, 125, 1754-1759.	2.5	3
5	Gas-Phase Rate Coefficient of OH + 1,2-Epoxybutane Determined between 220 and 950 K. ACS Earth and Space Chemistry, 2021, 5, 960-968.	2.7	5
6	Rate constant of the reaction of F atoms with methane over the temperature range 220–960ÂK. Chemical Physics Letters, 2021, 770, 138458.	2.6	3
7	Reaction Rate Coefficient of OH Radicals with $\langle i \rangle d \langle i \rangle \langle sub \rangle 9 \langle sub \rangle -Butanol as a Function of Temperature. ACS Omega, 2021, 6, 18123-18134.$	3.5	3
8	Disproportionation Channel of the Self-reaction of Hydroxyl Radical, OH + OH → H ₂ O + O, Revisited. Journal of Physical Chemistry A, 2020, 124, 3993-4005.	2.5	9
9	Temperature-Dependent Kinetic Study of the Reaction of Hydroxyl Radicals with Hydroxyacetone. Journal of Physical Chemistry A, 2020, 124, 2863-2870.	2.5	5
10	Temperatureâ€dependent rate constants for the reactions of chlorine atom with methanol and Br2. International Journal of Chemical Kinetics, 2020, 52, 310-318.	1.6	2
11	Rate constant of the BrOÂ+ÂBrO reaction over the temperature range 220â€950ÂK. International Journal of Chemical Kinetics, 2020, 52, 319-328.	1.6	O
12	Temperature-Dependent Rate Constant for the Reaction of Hydroxyl Radical with 3-Hydroxy-3-methyl-2-butanone. Journal of Physical Chemistry A, 2019, 123, 10446-10453.	2.5	11
13	Temperatureâ€dependent rate constant for the reaction of F atoms with HNO 3. International Journal of Chemical Kinetics, 2019, 51, 753-759.	1.6	4
14	Kinetic study of the F2 + C2H4 reaction: Disagreement between theory and experiment resolved?. Chemical Physics Letters, 2019, 722, 85-89.	2.6	0
15	Rate constants of the reactions of O(3 P) atoms with Br 2 and NO 2 over the temperature range 220â€950 K. International Journal of Chemical Kinetics, 2019, 51, 476-483.	1.6	11
16	Reactions of OH radicals with 2-methyl-1-butyl, neopentyl and 1-hexyl nitrates. Structure-activity relationship for gas-phase reactions of OH with alkyl nitrates: An update. Atmospheric Environment, 2018, 180, 167-172.	4.1	7
17	Reaction F + C ₂ H ₄ : Rate Constant and Yields of the Reaction Products as a Function of Temperature over 298–950 K. Journal of Physical Chemistry A, 2018, 122, 3156-3162.	2.5	7
18	Kinetics and Products of the Reactions of F ₂ with Brâ€Atom and Br ₂ . International Journal of Chemical Kinetics, 2018, 50, 425-434.	1.6	2

#	Article	IF	Citations
19	Kinetics and Products of the Reaction of OH Radicals with ClNO from 220 to 940 K. Journal of Physical Chemistry A, 2018, 122, 916-922.	2.5	0
20	Reaction of O($\langle \sup 3 \langle \sup P \rangle$) with C $\langle \sup 3 \langle \sup P \rangle$. Yield of the Reaction Products as a Function of Temperature. Journal of Physical Chemistry A, 2017, 121, 1553-1562.	2.5	12
21	Thermal decomposition of n-propyl and n-butyl nitrates: Kinetics and products. Journal of Analytical and Applied Pyrolysis, 2017, 124, 576-583.	5.5	6
22	Kinetics of the reactions of OH radicals with n -butyl, isobutyl, n -pentyl and 3-methyl-1-butyl nitrates. Atmospheric Environment, 2017, 155, 29-34.	4.1	3
23	Kinetic and Mechanistic Study of the Thermal Decomposition of Ethyl Nitrate. International Journal of Chemical Kinetics, 2017, 49, 354-362.	1.6	3
24	Kinetics and Products of the Reactions of Fluorine Atoms with ClNO and Br ₂ from 295 to 950 K. Journal of Physical Chemistry A, 2017, 121, 8341-8347.	2.5	9
25	Rate Constants of the Reactions of O(³ P) Atoms with Ethene and Propene over the Temperature Range 230–900 K. International Journal of Chemical Kinetics, 2017, 49, 53-60.	1.6	8
26	Thermal Decomposition of Isopropyl Nitrate: Kinetics and Products. Journal of Physical Chemistry A, 2016, 120, 8037-8043.	2.5	14
27	Kinetics and Products of the Reactions of Ethyl and <i>n</i> li>-Propyl Nitrates with OH Radicals. International Journal of Chemical Kinetics, 2016, 48, 822-829.	1.6	8
28	Reaction of O(³ P) with C ₂ H ₄ : Yield of the Reaction Products as a Function of Temperature. Journal of Physical Chemistry A, 2016, 120, 9063-9070.	2.5	8
29	Experimental Study of the Reactions of OH Radicals with Propane, <i>n</i> à€Pentane, and <i>n</i> å€Heptane over a Wide Temperature Range. International Journal of Chemical Kinetics, 2015, 47, 629-637.	1.6	37
30	Investigation of the Photochemical Reactivity of Soot Particles Derived from Biofuels Toward NO ₂ . A Kinetic and Product Study. Journal of Physical Chemistry A, 2015, 119, 2006-2015.	2.5	7
31	Gas-Phase Reaction of Hydroxyl Radical with $\langle i \rangle p \langle i \rangle$ -Cymene over an Extended Temperature Range. Journal of Physical Chemistry A, 2015, 119, 11076-11083.	2.5	7
32	Experimental Study of the Reaction of Isopropyl Nitrate with OH Radicals: Kinetics and Products. International Journal of Chemical Kinetics, 2015, 47, 42-49.	1.6	5
33	Reaction of Limonene with F ₂ : Rate Coefficient and Products. Journal of Physical Chemistry A, 2014, 118, 10233-10239.	2.5	2
34	Heterogeneous Interaction of H ₂ O ₂ with Arizona Test Dust. Journal of Physical Chemistry A, 2014, 118, 441-448.	2.5	26
35	Experimental Study of the Reactions of Limonene with OH and OD Radicals: Kinetics and Products. Journal of Physical Chemistry A, 2014, 118, 9482-9490.	2.5	16
36	Mineral Oxides Change the Atmospheric Reactivity of Soot: NO ₂ Uptake under Dark and UV Irradiation Conditions. Journal of Physical Chemistry A, 2013, 117, 12897-12911.	2.5	14

#	Article	IF	Citations
37	Kinetics and products of HONO interaction with TiO2 surface under UV irradiation. Atmospheric Environment, 2013, 67, 203-210.	4.1	23
38	Kinetics and Products of Heterogeneous Reaction of HONO with Fe ₂ O ₃ and Arizona Test Dust Environmental Science & Environmental	10.0	25
39	Interaction of OH Radicals with Arizona Test Dust: Uptake and Products. Journal of Physical Chemistry A, 2013, 117, 393-400.	2.5	24
40	Uptake of hydrogen peroxide on the surface of Al2O3 and Fe2O3. Atmospheric Environment, 2013, 77, 1-8.	4.1	23
41	Reactive Uptake of HONO to TiO ₂ Surface: "Dark―Reaction. Journal of Physical Chemistry A, 2012, 116, 3665-3672.	2.5	30
42	Interaction of NO ₂ with TiO ₂ Surface Under UV Irradiation: Products Study. Journal of Physical Chemistry A, 2012, 116, 1758-1764.	2.5	62
43	Reactive uptake of HONO on aluminium oxide surface. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 250, 50-57.	3.9	19
44	Heterogeneous Interaction of H ₂ O ₂ with TiO ₂ Surface under Dark and UV Light Irradiation Conditions. Journal of Physical Chemistry A, 2012, 116, 8191-8200.	2.5	54
45	Adsorption of water vapor on MgCl2Â×Â6H2O salt surface. Atmospheric Environment, 2011, 45, 2373-2378.	4.1	10
46	Kinetics of the reactions of soot surface-bound polycyclic aromatic hydrocarbons with the OH radicals. Atmospheric Environment, 2010, 44, 1754-1760.	4.1	46
47	Laboratory study of the interaction of HO2 radicals with the NaCl, NaBr, MgCl2·6H2O and sea salt surfaces. Physical Chemistry Chemical Physics, 2009, 11, 7896.	2.8	42
48	Experimental study of the interaction of HO2radicals with soot surface. Physical Chemistry Chemical Physics, 2005, 7, 334-341.	2.8	45
49	Kinetic and mechanistic study of the F atom reaction with nitrous acid. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 168, 103-108.	3.9	15
50	Heterogeneous reaction of ozone with hydrocarbon flame soot. Physical Chemistry Chemical Physics, 2004, 6, 1181-1191.	2.8	69
51	Temperature Dependence of the Rate Constant for the Reaction $F(2P) + Cl2 \hat{a}^{\dagger}$ FCl + Cl at T = $180\hat{a}^{2}$ 360 K. Journal of Physical Chemistry A, 2004, 108, 1726-1730.	2.5	4
52	Heterogeneous Reaction of NO2 with Hydrocarbon Flame Soot. Journal of Physical Chemistry A, 2004, 108, 10807-10817.	2.5	52
53	Kinetics and Mechanism of the O Atom Reaction with Dimethyl Sulfoxide. Journal of Physical Chemistry A, 2003, 107, 5404-5411.	2.5	16
54	Kinetics of Halogen Oxide Radicals in the Stratosphere. Chemical Reviews, 2003, 103, 4639-4656.	47.7	65

#	Article	IF	CITATIONS
55	Kinetic and mechanistic study of the X and XO (X = Cl, Br) reactions with dimethyl sulfoxide. Physical Chemistry Chemical Physics, 2003, 5, 2828-2835.	2.8	9
56	Kinetic Study of the Reactions of BrO Radicals with HO2and DO2. Journal of Physical Chemistry A, 2001, 105, 3167-3175.	2.5	21
57	Kinetics and Mechanism of the OH and OD Reactions with BrO. Journal of Physical Chemistry A, 2001, 105, 6154-6166.	2.5	14
58	Kinetics and mechanism of the reaction of Cl atoms with HO2 radicals. International Journal of Chemical Kinetics, 2001, 33, 317-327.	1.6	8
59	Kinetics and mechanism of the reaction of OH with ClO. International Journal of Chemical Kinetics, 2001, 33, 587-599.	1.6	16
60	Kinetics and Mechanism of the IO + BrO Reaction. Journal of Physical Chemistry A, 1998, 102, 10501-10511.	2.5	28
61	Low-Pressure Study of the Reaction of Cl Atoms with Isoprene. Journal of Physical Chemistry A, 1998, 102, 953-959.	2.5	79
62	Low-Pressure Study of the Reactions of Br Atoms with Alkenes. 1. Reaction with Propene. Journal of Physical Chemistry A, 1998, 102, 5867-5875.	2.5	20
63	Rate Constants for the Reactions I + OClO, I + ClO, Cl + I2, and Cl + IO and Heat of Formation of IO Radicals. The Journal of Physical Chemistry, 1996, 100, $15130-15136$.	2.9	25
64	Rate constants for the reaction of SO with NO ₂ over the temperature range 220–960ÂK. International Journal of Chemical Kinetics, 0, , .	1.6	3