
Nuria Verdaguer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1833580/publications.pdf Version: 2024-02-01

NUDIA VEDDACHER

#	Article	IF	CITATIONS
1	SARS-CoV-2 Point Mutation and Deletion Spectra and Their Association with Different Disease Outcomes. Microbiology Spectrum, 2022, 10, e0022122.	1.2	10
2	Symmetry disruption commits vault particles to disassembly. Science Advances, 2022, 8, eabj7795.	4.7	9
3	SARS-CoV-2 Mutant Spectra at Different Depth Levels Reveal an Overwhelming Abundance of Low Frequency Mutations. Pathogens, 2022, 11, 662.	1.2	16
4	Structure and Double-Stranded RNA-Binding Activity of the Birnavirus Drosophila X Virus VP3 Protein. Journal of Virology, 2021, 95, .	1.5	2
5	Snapshots of a Non-Canonical RdRP in Action. Viruses, 2021, 13, 1260.	1.5	5
6	Amino Acid Substitutions Associated with Treatment Failure for Hepatitis C Virus Infection. Journal of Clinical Microbiology, 2020, 58, .	1.8	15
7	Multimerization of Zika Virus-NS5 Causes Ciliopathy and Forces Premature Neurogenesis. Cell Stem Cell, 2020, 27, 920-936.e8.	5.2	18
8	(F)uridylylated Peptides Linked to VPg1 of Foot-and- Mouth Disease Virus (FMDV): Design, Synthesis and X-Ray Crystallography of the Complexes with FMDV RNA-Dependent RNA Polymerase. Molecules, 2019, 24, 2360.	1.7	2
9	Cryo-EM structure of pleconaril-resistant rhinovirus-B5 complexed to the antiviral OBR-5-340 reveals unexpected binding site. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19109-19115.	3.3	22
10	Supramolecular arrangement of the full-length Zika virus NS5. PLoS Pathogens, 2019, 15, e1007656.	2.1	38
11	Contribution of a Multifunctional Polymerase Region of Foot-and-Mouth Disease Virus to Lethal Mutagenesis. Journal of Virology, 2018, 92, .	1.5	5
12	Viral RNA-Dependent RNA Polymerases: A Structural Overview. Sub-Cellular Biochemistry, 2018, 88, 39-71.	1.0	38
13	Structure of elF4E in Complex with an elF4G Peptide Supports a Universal Bipartite Binding Mode for Protein Translation. Plant Physiology, 2017, 174, 1476-1491.	2.3	32
14	Structural characterization of the Rabphilin-3A–SNAP25 interaction. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5343-E5351.	3.3	37
15	Molecular and Functional Bases of Selection against a Mutation Bias in an RNA Virus. Genome Biology and Evolution, 2017, 9, 1212-1228.	1.1	13
16	Structural basis for biologically relevant mechanical stiffening of a virus capsid by cavity-creating or spacefilling mutations. Scientific Reports, 2017, 7, 4101.	1.6	23
17	Both <i>cis</i> and <i>trans</i> Activities of Foot-and-Mouth Disease Virus 3D Polymerase Are Essential for Viral RNA Replication. Journal of Virology, 2016, 90, 6864-6883.	1.5	17
18	Decrease in pH destabilizes individual vault nanocages by weakening the inter-protein lateral interaction. Scientific Reports, 2016, 6, 34143.	1.6	17

#	Article	IF	CITATIONS
19	RNA-Dependent RNA Polymerases of Picornaviruses: From the Structure to Regulatory Mechanisms. Viruses, 2015, 7, 4438-4460.	1.5	53
20	The Structure of the RNA-Dependent RNA Polymerase of a Permutotetravirus Suggests a Link between Primer-Dependent and Primer-Independent Polymerases. PLoS Pathogens, 2015, 11, e1005265.	2.1	25
21	The RNA Template Channel of the RNA-Dependent RNA Polymerase as a Target for Development of Antiviral Therapy of Multiple Genera within a Virus Family. PLoS Pathogens, 2015, 11, e1004733.	2.1	55
22	Multifunctionality of a Picornavirus Polymerase Domain: Nuclear Localization Signal and Nucleotide Recognition. Journal of Virology, 2015, 89, 6848-6859.	1.5	22
23	Structural Basis for Host Membrane Remodeling Induced by Protein 2B of Hepatitis A Virus. Journal of Virology, 2015, 89, 3648-3658.	1.5	16
24	Infectious Bursal Disease Virus VP3 Upregulates VP1-Mediated RNA-Dependent RNA Replication. Journal of Virology, 2015, 89, 11165-11168.	1.5	27
25	The Crystal Structure of a Cardiovirus RNA-Dependent RNA Polymerase Reveals an Unusual Conformation of the Polymerase Active Site. Journal of Virology, 2014, 88, 5595-5607.	1.5	24
26	A novel benzonitrile analogue inhibits rhinovirus replication. Journal of Antimicrobial Chemotherapy, 2014, 69, 2723-2732.	1.3	27
27	Cryo-EM near-atomic structure of a dsRNA fungal virus shows ancient structural motifs preserved in the dsRNA viral lineage. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7641-7646.	3.3	32
28	Mechanical Stability and Reversible Fracture of Vault Particles. Biophysical Journal, 2014, 106, 687-695.	0.2	36
29	Viruses and viral proteins. IUCrJ, 2014, 1, 492-504.	1.0	24
30	Uncoating of common cold virus is preceded by RNA switching as determined by X-ray and cryo-EM analyses of the subviral A-particle. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20063-20068.	3.3	51
31	Role of Motif B Loop in Allosteric Regulation of RNA-Dependent RNA Polymerization Activity. Journal of Molecular Biology, 2013, 425, 2279-2287.	2.0	55
32	X-Ray Crystallography of Viruses. Sub-Cellular Biochemistry, 2013, 68, 117-144.	1.0	8
33	New features of vault architecture and dynamics revealed by novel refinement using the deformable elastic network approach. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1054-1061.	2.5	12
34	Structural insights into the Ca ²⁺ and Pl(4,5)P ₂ binding modes of the C2 domains of rabphilin 3A and synaptotagmin 1. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20503-20508.	3.3	64
35	Insights into Minor Group Rhinovirus Uncoating: The X-ray Structure of the HRV2 Empty Capsid. PLoS Pathogens, 2012, 8, e1002473.	2.1	98
36	Purification, crystallization and preliminary X-ray diffraction analysis of the RNA-dependent RNA polymerase fromThosea asignavirus. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 1263-1266.	0.7	3

#	Article	IF	CITATIONS
37	Vault particles: a new generation of delivery nanodevices. Current Opinion in Biotechnology, 2012, 23, 972-977.	3.3	19
38	Conformational Changes in Motif D of RdRPs as Fidelity Determinant. Structure, 2012, 20, 1448-1450.	1.6	8
39	Epitope Insertion at the N-Terminal Molecular Switch of the Rabbit Hemorrhagic Disease Virus T=3 Capsid Protein Leads to Larger T=4 Capsids. Journal of Virology, 2012, 86, 6470-6480.	1.5	25
40	Structural Dynamics of Picornaviral RdRP Complexes. Implications for the Design of Antivirals. NATO Science for Peace and Security Series A: Chemistry and Biology, 2012, , 183-193.	0.5	0
41	Cloning, purification and preliminary crystallographic studies of the 2AB protein from hepatitis A virus. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1224-1227.	0.7	3
42	Structure of Foot-and-Mouth Disease Virus Mutant Polymerases with Reduced Sensitivity to Ribavirin. Journal of Virology, 2010, 84, 6188-6199.	1.5	50
43	A Multi-Step Process of Viral Adaptation to a Mutagenic Nucleoside Analogue by Modulation of Transition Types Leads to Extinction-Escape. PLoS Pathogens, 2010, 6, e1001072.	2.1	83
44	The T=1 Capsid Protein of <i>Penicillium chrysogenum</i> Virus Is Formed by a Repeated Helix-Rich Core Indicative of Gene Duplication. Journal of Virology, 2010, 84, 7256-7266.	1.5	39
45	Autoproteolytic Activity Derived from the Infectious Bursal Disease Virus Capsid Protein. Journal of Biological Chemistry, 2009, 284, 8064-8072.	1.6	40
46	Structural and mechanistic insights into the association of PKCα-C2 domain to PtdIns(4,5)P ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6603-6607.	3.3	99
47	Structural insights into replication initiation and elongation processes by the FMDV RNA-dependent RNA polymerase. Current Opinion in Structural Biology, 2009, 19, 752-758.	2.6	56
48	Minor group human rhinovirus–receptor interactions: Geometry of multimodular attachment and basis of recognition. FEBS Letters, 2009, 583, 235-240.	1.3	26
49	The mechanism of vault opening from the high resolution structure of the N-terminal repeats of MVP. EMBO Journal, 2009, 28, 3450-3457.	3.5	30
50	RNA Virus Polymerases. , 2009, , 383-401.		3
51	Structural Insights into the Multifunctional Protein VP3 of Birnaviruses. Structure, 2008, 16, 29-37.	1.6	37
52	Sequential structures provide insights into the fidelity of RNA replication. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9463-9468.	3.3	113
53	Activation mechanism of a noncanonical RNA-dependent RNA polymerase. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20540-20545.	3.3	80
54	Infectious Bursal Disease Virus Capsid Assembly and Maturation by Structural Rearrangements of a Transient Molecular Switch. Journal of Virology, 2007, 81, 6869-6878.	1.5	45

#	Article	IF	CITATIONS
55	The structure of a protein primer–polymerase complex in the initiation of genome replication. EMBO Journal, 2006, 25, 880-888.	3.5	124
56	A comparison of viral RNA-dependent RNA polymerases. Current Opinion in Structural Biology, 2006, 16, 27-34.	2.6	205
57	The 2.6-Angstrom Structure of Infectious Bursal Disease Virus-Derived T=1 Particles Reveals New Stabilizing Elements of the Virus Capsid. Journal of Virology, 2006, 80, 6895-6905.	1.5	60
58	X-ray crystallography of virus-receptor complexes: structure of a minor group rhinovirus bound to its cellular receptor protein. Crystallography Reviews, 2005, 11, 73-81.	0.4	1
59	Mutant Viral Polymerase in the Transition of Virus to Error Catastrophe Identifies a Critical Site for RNA Binding. Journal of Molecular Biology, 2005, 353, 1021-1032.	2.0	42
60	Preliminary analysis of two and three dimensional crystals of vault ribonucleoprotein particles. Journal of Structural Biology, 2005, 151, 111-115.	1.3	4
61	X-ray structure of a minor group human rhinovirus bound to a fragment of its cellular receptor protein. Nature Structural and Molecular Biology, 2004, 11, 429-434.	3.6	143
62	The coat protein of Rabbit hemorrhagic disease virus contains a molecular switch at the N-terminal region facing the inner surface of the capsid. Virology, 2004, 322, 118-134.	1.1	49
63	Structure of Foot-and-Mouth Disease Virus RNA-dependent RNA Polymerase and Its Complex with a Template-Primer RNA. Journal of Biological Chemistry, 2004, 279, 47212-47221.	1.6	198
64	Functional and Structural Aspects of the Interaction of Foot-and-Mouth Disease Virus with Antibodies. , 2004, , 224-260.		5
65	Crystallization and preliminary X-ray analysis of swine vesicular disease virus (SVDV). Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 541-543.	2.5	3
66	Crystallization and preliminary X-ray analysis of the glycogen synthase fromPyrococcus abyssi. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 2322-2324.	2.5	6
67	Retinoic Acid Binds to the C2-Domain of Protein Kinase Cαâ€. Biochemistry, 2003, 42, 8774-8779.	1.2	76
68	Structure of Swine Vesicular Disease Virus: Mapping of Changes Occurring during Adaptation of Human Coxsackie B5 Virus To Infect Swine. Journal of Virology, 2003, 77, 9780-9789.	1.5	21
69	Evolution of Cell Recognition by Viruses: A Source of Biological Novelty with Medical Implications. Advances in Virus Research, 2003, 62, 19-111.	0.9	58
70	Additional Binding Sites for Anionic Phospholipids and Calcium Ions in the Crystal Structures of Complexes of the C2 Domain of Protein Kinase Cα. Journal of Molecular Biology, 2002, 320, 277-291.	2.0	74
71	Structure of the C2 domain from novel protein kinase Cïµ. A membrane binding model for Ca2+-independent C2 domains. Journal of Molecular Biology, 2001, 311, 837-849.	2.0	97
72	Crystallization and preliminary X-ray analysis of clade I catalases fromPseudomonas syringaeandListeria seeligeri. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 1184-1186.	2.5	6

#	Article	IF	CITATIONS
73	The need for a shared database infrastructure: combining X-ray crystallography and electron microscopy. European Biophysics Journal, 2000, 29, 457-462.	1.2	5
74	A multiply substituted G–H loop from foot-and-mouth disease virus in complex with a neutralizing antibody: a role for water molecules. Journal of General Virology, 2000, 81, 1495-1505.	1.3	37
75	Crystallization and preliminary X-ray analysis of human rhinovirus serotype 2 (HRV2). Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 1459-1461.	2.5	4
76	Flexibility of the Major Antigenic Loop of Foot-and-Mouth Disease Virus Bound to a Fab Fragment of a Neutralising Antibody: Structure and Neutralisation. Virology, 1999, 255, 260-268.	1.1	53
77	Ca2+ bridges the C2 membrane-binding domain of protein kinase Cα directly to phosphatidylserine. EMBO Journal, 1999, 18, 6329-6338.	3.5	323
78	A Similar Pattern of Interaction for Different Antibodies with a Major Antigenic Site of Foot-and-Mouth Disease Virus: Implications for Intratypic Antigenic Variation. Journal of Virology, 1998, 72, 739-748.	1.5	69
79	Rapid Selection in Modified BHK-21 Cells of a Foot-and-Mouth Disease Virus Variant Showing Alterations in Cell Tropism. Journal of Virology, 1998, 72, 10171-10179.	1.5	56
80	Multiple Virulence Determinants of Foot-and-Mouth Disease Virus in Cell Culture. Journal of Virology, 1998, 72, 6362-6372.	1.5	141
81	Structural Variability of A-DNA in Crystals of the Octamer d(pCpCpCpGpGpGpGpG). Journal of Biomolecular Structure and Dynamics, 1997, 15, 151-163.	2.0	14
82	Induced Pocket to Accommodate the Cell Attachment Arg-Gly-Asp Motif in a Neutralizing Antibody Against Foot-and-Mouth-Disease Virus. Journal of Molecular Biology, 1996, 256, 364-376.	2.0	69
83	Antigenically Profound Amino Acid Substitutions Occur during Large Population Passages of Foot-and-Mouth Disease Virus. Virology, 1996, 225, 400-405.	1.1	22
84	Crystal structure of catalase HPII from Escherichia coli. Structure, 1995, 3, 491-502.	1.6	99
85	Molecular evolution of aphthoviruses. Virus Genes, 1995, 11, 197-207.	0.7	37
86	Molecular structure of a complete turn of A-DNA. Journal of Molecular Biology, 1991, 221, 623-635.	2.0	51
87	Mutation, Quasispecies, and Lethal Mutagenesis. , 0, , 195-211.		Ο