Chao Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1833524/publications.pdf Version: 2024-02-01

CHAO SHEN

#	Article	IF	CITATIONS
1	Visible-light-induced C–H sulfenylation of quinoxalin-2(1H)-ones with disulfides by sustainable cerium catalysis. Green Synthesis and Catalysis, 2023, 4, 226-230.	6.8	8
2	Visible-light-induced decarboxylative alkylation of quinoxalin-2(1H)-ones with phenyliodine(III) dicarboxylates by cerium photocatalysis. Molecular Catalysis, 2022, 519, 112145.	2.0	7
3	Selective Mono- and Diamination of Ketones in a Combined Copper–Organocatalyst System. Organic Letters, 2022, 24, 3614-3619.	4.6	14
4	Oxidative Sulfonylation of Hydrazones Enabled by Synergistic Copper/Silver Catalysis. Journal of Organic Chemistry, 2021, 86, 3706-3720.	3.2	19
5	Catalyst controlled remote C H activation of 8-aminoquinolines with NFSI for C N versus C F coupling. Catalysis Communications, 2021, 158, 106336.	3.3	4
6	Magnetically Reusable Fe3O4@NC@Pt Catalyst for Selective Reduction of Nitroarenes. Catalysts, 2021, 11, 1219.	3.5	7
7	Photo-Induced Cross-Dehydrogenative Alkylation of Heteroarenes with Alkanes under Aerobic Conditions. Journal of Organic Chemistry, 2021, 86, 17816-17832.	3.2	32
8	Facile Fabrication of Glycosylpyridyl-Triazole@Nickel Nanoparticles as Recyclable Nanocatalyst for Acylation of Amines in Water. Catalysts, 2020, 10, 230.	3.5	3
9	Recyclable Cellulose-Derived Fe3O4@Pd NPs for Highly Selective C–S Formation by Heterogeneously C–H Sulfenylation of Indoles. Catalysis Letters, 2020, 150, 2409-2414.	2.6	5
10	lodobenzene-catalyzed oxidative C H d-alkoxylation of quinoxalinones with deuterated alcohols. Catalysis Communications, 2020, 141, 106008.	3.3	7
11	Novel Biomass-Derived Fe3O4@Pd NPs as Efficient and Sustainable Nanocatalyst for Nitroarene Reduction in Aqueous Media. Catalysis Letters, 2019, 149, 2607-2613.	2.6	7
12	Platinum(<scp>ii</scp>)-catalyzed selective <i>para</i> C–H alkoxylation of arylamines through a coordinating activation strategy. Organic and Biomolecular Chemistry, 2019, 17, 490-497.	2.8	19
13	Recent Advances in the Catalytic Synthesis of 4-Quinolones. CheM, 2019, 5, 1059-1107.	11.7	56
14	Coordinating Activation Strategyâ€Induced Selective Câ^'H Trifluoromethylation of Anilines. ChemCatChem, 2018, 10, 965-970.	3.7	38
15	Novel Magnetically-Recyclable, Nitrogen-Doped Fe3O4@Pd NPs for Suzuki–Miyaura Coupling and Their Application in the Synthesis of Crizotinib. Catalysts, 2018, 8, 443.	3.5	9
16	Copper(II)â€Catalyzed Selective <i>Para</i> Amination of Arylamine with Pyrazole by Câ^'H Functionalization. ChemCatChem, 2018, 10, 3675-3679.	3.7	42
17	Palladium-Catalyzed Direct Ortho C–O bond construction of Azobenzenes with Iodobenzene diacetate via C–H Activation. Catalysis Letters, 2017, 147, 400-406.	2.6	10
18	Transition-metal-free direct perfluoroalkylation of quinoline amides at C5 position through radical cross-coupling under mild conditions. Organic Chemistry Frontiers, 2017, 4, 1116-1120.	4.5	52

CHAO SHEN

#	Article	IF	CITATIONS
19	Selective remote esterification of 8-aminoquinoline amides via copper(ii)-catalyzed C(sp2)–O cross-coupling reaction. Organic and Biomolecular Chemistry, 2017, 15, 531-535.	2.8	44
20	Iron-Catalyzed C5 Halogenation of 8-Amidoquinolines Using Sodium Halides at Room Temperature. Catalysis Letters, 2017, 147, 1574-1580.	2.6	9
21	lodobenzene-catalyzed synthesis of aryl sulfonate esters from aminoquinolines via remote radical C–O cross-coupling. RSC Advances, 2017, 7, 49436-49439.	3.6	31
22	Nickel(II)-Catalyzed Site-Selective C–H Bond Trifluoromethylation of Arylamine in Water through a Coordinating Activation Strategy. Organic Letters, 2017, 19, 5661-5664.	4.6	87
23	Catalystâ€Controlled Selectivity in Câ^'S Bond Formation: Highly Efficient Synthesis of C2―and C3â€&ulfonylindoles. ChemCatChem, 2016, 8, 304-307.	3.7	46
24	Copper(<scp>ii</scp>)-catalyzed remote sulfonylation of aminoquinolines with sodium sulfinates <i>via</i> radical coupling. RSC Advances, 2016, 6, 37173-37179.	3.6	53
25	Catalyst-Controlled Selectivity in Câ^'S Bond Formation: Highly Efficient Synthesis of C2- and C3-Sulfonylindoles. ChemCatChem, 2016, 8, 280-280.	3.7	1
26	Synthesis and Biological Evaluation of Novel Carbohydrateâ€Đerived Derivatives of Erlotinib. Drug Development Research, 2016, 77, 319-325.	2.9	10
27	Heterogeneous Chitosan@Copper(II) atalyzed Remote Trifluoromethylation of Aminoquinolines with the Langlois Reagent by Radical Crossâ€Coupling. ChemCatChem, 2016, 8, 3560-3564.	3.7	60
28	Catalystâ€Controlled Selectivity in the Synthesis of C2―and C3â€Sulfonate Esters from Quinoline <i>N</i> à€Oxides and Aryl Sulfonyl Chlorides. ChemCatChem, 2016, 8, 2604-2608.	3.7	40
29	Catalystâ€Triggered Highly Selective Câ^'S and Câ^'Se Bond Formation by Câ^'H Activation. ChemCatChem, 2016, 8, 2916-2919.	3.7	21
30	Copper-catalyzed rapid C–H nitration of 8-aminoquinolines by using sodium nitrite as the nitro source under mild conditions. RSC Advances, 2016, 6, 89979-89983.	3.6	46
31	Copper(II)â€Catalyzed Direct Azidation of <i>N</i> â€Acylated 8â€Aminoquinolines by Remote Câ^'H Activation. ChemCatChem, 2016, 8, 3570-3574.	3.7	45
32	Remote Câ^'H Activation of Quinolines through Copperâ€Catalyzed Radical Crossâ€Coupling. Chemistry - an Asian Journal, 2016, 11, 882-892.	3.3	130
33	Copper(<scp>ii</scp>)-catalyzed C5 and C7 halogenation of quinolines using sodium halides under mild conditions. Organic and Biomolecular Chemistry, 2016, 14, 3016-3021.	2.8	103
34	A highly efficient synthesis of N-glycosyl-1,2,3-triazoles using a recyclable cellulose-copper(0) catalyst in water. Catalysis Communications, 2016, 79, 11-16.	3.3	38
35	Palladium atalyzed Thioetherification of Quinolone Derivatives via Decarboxylative Câ^'S Cross ouplings. Chemistry - an Asian Journal, 2016, 11, 360-366.	3.3	32
36	Palladium-catalyzed direct ortho-sulfonylation of azobenzenes with arylsulfonyl chlorides via C–H activation. RSC Advances, 2015, 5, 52588-52594.	3.6	34

CHAO SHEN

#	Article	IF	CITATIONS
37	Novel glycosyl pyridyl-triazole@palladium nanoparticles: efficient and recoverable catalysts for C–C cross-coupling reactions. Catalysis Science and Technology, 2015, 5, 2065-2071.	4.1	44
38	Palladium-Catalyzed Decarboxylative Csp2–Csp2 Cross-Coupling Reactions: An Efficient Route for Synthesis of Azaisoflavone Derivatives. Catalysis Letters, 2015, 145, 1634-1642.	2.6	8
39	A novel <scp>d</scp> -glucosamine-derived pyridyl-triazole@palladium catalyst for solvent-free Mizoroki–Heck reactions and its application in the synthesis of Axitinib. Green Chemistry, 2015, 17, 225-230.	9.0	62
40	Recent advances in C–S bond formation via C–H bond functionalization and decarboxylation. Chemical Society Reviews, 2015, 44, 291-314.	38.1	702
41	A highly active and easily recoverable chitosan@copper catalyst for the C–S coupling and its application in the synthesis of zolimidine. Green Chemistry, 2014, 16, 3007-3012.	9.0	142
42	<scp>d</scp> -Glucosamine as a green ligand for copper catalyzed synthesis of aryl sulfones from aryl halides and sodium sulfinates. RSC Advances, 2014, 4, 26295-26300.	3.6	41
43	A concise, efficient synthesis of sugar-based benzothiazoles through chemoselective intramolecular C–S coupling. Chemical Science, 2012, 3, 2388.	7.4	67
44	A Novel 1â€Glycosylâ€1 <i>H</i> â€ŧriazoleâ€Based <i>P</i> , <i>N</i> Ligand for Rhodiumâ€Catalyzed Asymmetric Hydrosilylation of Ketones. Helvetica Chimica Acta, 2010, 93, 2433-2438.	² 1.6	15
45	Synthesis of Some Novel Glucosyl Triazoles from 2,3,4,6-Tetra-O-pivaloyl-D-glucopyranosylÂAzide. Journal of Carbohydrate Chemistry, 2010, 29, 155-163.	1.1	8
46	Synthesis and Crystal Structure of 3,5-Dichloro-6-morpholinopyridin-2-ol. Journal of Chemical Crystallography, 2009, 39, 919-922.	1.1	0
47	Catalyst-Controlled Selectivity in Oxidation of Olefins: Highly Facile Success to Functionalized Aldehydes and Ketones. Catalysis Letters, 0, , 1.	2.6	1