Mohamed Shaker S Adam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1833416/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Some New Nano-sized Mononuclear Cu(II) Schiff Base Complexes: Design, Characterization, Molecular Modeling and Catalytic Potentials in Benzyl Alcohol Oxidation. Catalysis Letters, 2016, 146, 1373-1396.	2.6	140
2	Synthesis, theoretical investigations, biocidal screening, DNA binding, <i>in vitro</i> cytotoxicity and molecular docking of novel Cu (II), Pd (II) and Ag (I) complexes of chlorobenzylidene Schiff base: Promising antibiotic and anticancer agents. Applied Organometallic Chemistry, 2018, 32, e4527.	3.5	132
3	Synthesis of polar unique 3d metal-imine complexes of salicylidene anthranilate sodium salt. Homogeneous catalytic and corrosion inhibition performance. Journal of the Taiwan Institute of Chemical Engineers, 2018, 88, 286-304.	5.3	49
4	Catalytic activity of nickel(II), copper(II) and oxovanadium(II)â€dihydroindolone complexes towards homogeneous oxidation reactions. Applied Organometallic Chemistry, 2018, 32, e4234.	3.5	46
5	Targeting ctDNA binding and elaborated in-vitro assessments concerning novel Schiff base complexes: Synthesis, characterization, DFT and detailed in-silico confirmation. Journal of Molecular Liquids, 2021, 322, 114977.	4.9	46
6	Biological potential of oxo-vanadium salicylediene amino-acid complexes as cytotoxic, antimicrobial, antioxidant and DNA interaction. Journal of Photochemistry and Photobiology B: Biology, 2018, 184, 34-43.	3.8	45
7	3-Amino- and 3-acylamido-2-phosphonopyridines: synthesis by Pd-catalyzed P–C coupling, structure and conversion to pyrido[b]-anellated PC–N heterocycles. Tetrahedron, 2008, 64, 7960-7967.	1.9	40
8	Anionic oxideâ€'vanadium Schiff base amino acid complexes as potent inhibitors and as effective catalysts for sulfides oxidation: Experimental studies complemented with quantum chemical calculations. Journal of Molecular Liquids, 2018, 250, 307-322.	4.9	39
9	<i>Bis</i> â€dioxomolybdenum (VI) oxalyldihydrazone complexes: Synthesis, characterization, DFT studies, catalytic epoxidation potential, molecular modeling and biological evaluations. Applied Organometallic Chemistry, 2020, 34, e5573.	3.5	37
10	Synthesis and characterization of binary and ternary oxovanadium complexes of <i>N</i> , <i>N</i> ′â€{2â€pyridyl)thiourea and curcumin: Catalytic oxidation potential, antibacterial, antimicrobial, antioxidant and DNA interaction studies. Applied Organometallic Chemistry, 2017, 31, e3650	3.5	35
11	Catalytic performance of binary and ternary oxovanadium complexes of dipyridinyl-urea in (ep)oxidation of cis-cyclooctene and 1-octene. Reaction Kinetics, Mechanisms and Catalysis, 2018, 124, 779-805.	1.7	35
12	Adsorption Studies on the Removal of Hexavalent Chromium-Contaminated Wastewater Using Activated Carbon and Bentonite. Asian Journal of Chemistry, 2013, 25, 8245-8252.	0.3	31
13	Catalytic (ep)oxidation and corrosion inhibition potentials of Cull and Coll pyridinylimino phenolate complexes. Polyhedron, 2018, 151, 118-130.	2.2	31
14	Synthesis, catalysis, antimicrobial activity, and DNA interactions of new Cu(II)-Schiff base complexes. Inorganic and Nano-Metal Chemistry, 2020, 50, 136-150.	1.6	31
15	Catalytic potentials of homodioxo-bimetallic dihydrazone complexes of uranium and molybdenum in a homogeneous oxidation of alkenes. Monatshefte FÃ1⁄4r Chemie, 2015, 146, 1823-1836.	1.8	30
16	Catalytic comparison of various polar Zn(II)-Schiff base complexes and VO(II)-Schiff base complexes in (ep)oxidation processes of 1,2-cyclohexene and cyclohexane. Research on Chemical Intermediates, 2019, 45, 4653-4675.	2.7	29
17	Biological and catalytic potential of sustainable low and high valent metal-Schiff base sulfonate salicylidene pincer complexes. RSC Advances, 2019, 9, 34311-34329.	3.6	29
18	Catalytic evaluation of copper (II) <i>N</i> â€salicylideneâ€amino acid Schiff base in the various catalytic processes. Applied Organometallic Chemistry, 2020, 34, e5598.	3.5	29

#	Article	IF	CITATIONS
19	Synthesis, spectral characterization, DFT calculations, pharmacological studies, CT-DNA binding and molecular docking of potential N, O-multidentate chelating ligand and its VO(II), Zn(II) and ZrO(II) chelates. Bioorganic Chemistry, 2021, 114, 105106.	4.1	29
20	Tailoring, structural inspection of novel oxy and non-oxy metal-imine chelates for DNA interaction, pharmaceutical and molecular docking studies. Polyhedron, 2021, 201, 115167.	2.2	26
21	Novel isatin-based complexes of Mn(II) and Cu(II) ions: Characterization, homogeneous catalysts for sulfides oxidation, bioactivity screening and theoretical implementations via DFT and pharmacokinetic studies. Journal of Molecular Liquids, 2022, 351, 118620.	4.9	26
22	Synthesis, physicochemical and optical characterizations of a new isatin hydrazone derivative and its ZnO-complex for potential energy conversion and storage applications. Journal of Physics and Chemistry of Solids, 2021, 151, 109817.	4.0	25
23	Water-soluble Cu(II)-complexes of Schiff base amino acid derivatives as biological reagents and sufficient catalysts for oxidation reactions. Journal of the Taiwan Institute of Chemical Engineers, 2020, 113, 27-45.	5.3	24
24	Synthesis, Characterization and Spectrophotometric Studies of Seven Novel Antibacterial Hydrophilic Iron(II) Schiff Base Amino Acid Complexes. Journal of the Korean Chemical Society, 2013, 57, 560-567.	0.2	23
25	Synthesis, characterization, biological and docking studies of ZrO(II), VO(II) and Zn(II) complexes of a halogenated tetra-dentate Schiff base. Arabian Journal of Chemistry, 2022, 15, 103737.	4.9	23
26	Pyridoâ€Annulated 1,3â€Azaphospholes: Synthesis of 1,3â€Azaphospholo[5,4â€ <i>b</i>]pyridines and Prelimina Reactivity Studies. European Journal of Inorganic Chemistry, 2010, 2010, 3307-3316.	ry _{2.0}	21
27	Phosphonylation of 2â€Amino―and 2â€Amidoâ€3â€bromopyridines and 2â€Aminoâ€3â€chloroquinoxalines wit Triethyl Phosphite. European Journal of Organic Chemistry, 2009, 2009, 4655-4665.	th 2.4	20
28	Hybrid organicâ€inorganic Cu(II) iminoisonicotine@TiO ₂ @Fe ₃ O ₄ heterostructure as efficient catalyst for crossâ€couplings. Journal of the American Ceramic Society, 2020, 103, 4632-4653.	3.8	19
29	A combination of modeling and experimental approaches to investigate the novel nicotinohydrazone Schiff base and its complexes with Zn(II) and ZrO(II) as inhibitors for mild-steel corrosion in molar HCl. Journal of the Taiwan Institute of Chemical Engineers, 2021, 120, 391-408.	5.3	19
30	Effect of oxy-vanadium (IV) and oxy-zirconium (IV) ions in O,N-bidentate arylhydrazone complexes on their catalytic and biological potentials that supported via computerized usages. Journal of the Taiwan Institute of Chemical Engineers, 2022, 132, 104168.	5.3	19
31	Polar and nonpolar iron (II) complexes of isatin hydrazone derivatives as effective catalysts in oxidation reactions and their antimicrobial and anticancer activities. Applied Organometallic Chemistry, 2022, 36, .	3.5	18
32	Mononucleating nicotinohydazone complexes with VO2+, Cu2+, and Ni2+ ions. Characteristic, catalytic, and biological assessments. Journal of Molecular Liquids, 2021, 334, 116001.	4.9	17
33	Enhanced catalytic (ep)oxidation of olefins by VO(II), ZrO(II) and Zn(II)-imine complexes; extensive characterization supported by DFT studies. Journal of Molecular Structure, 2021, 1236, 130295.	3.6	17
34	Sulfonated salicylidene thiadiazole complexes with Co (II) and Ni (II) ions as sustainable corrosion inhibitors and catalysts for cross coupling reaction. Applied Organometallic Chemistry, 2019, 33, e4987.	3.5	16
35	Comparison of the reactivity of 2-amino-3-chloro- and 2,3-dichloroquinoxalines towards Ph2PH and Ph2PLi and of the properties of diphenylphosphanyl-quinoxaline P,N and P,P ligands. Polyhedron, 2013, 50, 101-111.	2.2	15
36	Sustainable dipolar homo-dicopper (II) dihydrazone complex as a catalyst for Sonogashira cross couplings. Journal of Organometallic Chemistry, 2019, 903, 120985.	1.8	15

2.2

5

#	Article	IF	CITATIONS
37	New Cu(II) and VO(II)-O,N,O-aroylhydrazone complexes: Biological evaluation, catalytic performance, ctDNA interaction, DFT, pharmacophore, and docking simulation. Journal of Molecular Liquids, 2021, 335, 116554.	4.9	15
38	Hydrophilicity and acid hydrolysis of water-soluble antibacterial iron(II) Schiff base complexes in binary aqueous solvents. Russian Journal of General Chemistry, 2013, 83, 2460-2464.	0.8	14
39	Unraveling urea pre-treatment correlated to activate Er2(WO4)3 as an efficient and stable counter electrode for dye-sensitized solar cells. Electrochimica Acta, 2020, 333, 135540.	5.2	13
40	Nanocompositeâ€based inorganicâ€organocatalyst Cu(II) complex and SiO ₂ ―and Fe ₃ O ₄ nanoparticles as lowâ€cost and efficient catalysts for aniline and 2â€aminopyridine oxidation. Applied Organometallic Chemistry, 2020, 34, e5999.	3.5	13
41	Synthesis and characterization of novel bis(diphenylphosphino)-oxalyl and (substituted) malonyl dihydrazones: P,N,N,P-tetradentate complexes of an oxalyl derivative with Cu(II), Pd(II), and Mn(II). Monatshefte Für Chemie, 2014, 145, 435-445.	1.8	12
42	Nickel (II), copper (II), and vanadyl (II) complexes with tridentate nicotinoyl hydrazone derivative functionalized as effective catalysts for epoxidation processes and as biological reagents. Journal of the Taiwan Institute of Chemical Engineers, 2022, 132, 104192.	5.3	12
43	Facile synthesis, characterizations, and impedance spectroscopic features of Zn(II)-bis Schiff base complex films towards photoelectronic applications. Journal of Solid State Electrochemistry, 2019, 23, 2519-2531.	2.5	11
44	Homo-dinuclear VO2+and Ni2+dihydrazone complexes: Synthesis, characterization, catalytic activity and CO2-corrosion inhibition under sustainable conditions. Inorganica Chimica Acta, 2020, 499, 119212.	2.4	11
45	Comparable catalytic and biological behavior of alternative polar dioxo-molybdenum (VI) Schiff base hydrazone chelates. Journal of the Taiwan Institute of Chemical Engineers, 2022, 136, 104425.	5.3	11
46	Promoted catalytic potential in sulfides oxidation and biological screening of green Pd (II) and Co (II) complexes of salicylidene isatin hydrazone ligand. Applied Organometallic Chemistry, 2022, 36, .	3.5	10
47	Catalytic and biological reactivities of mononuclear copper (II) and vanadyl (II) complexes of naphthalenylimino-phenolate sodium sulfonate. Journal of the Taiwan Institute of Chemical Engineers, 2021, 118, 12-28.	5.3	9
48	Reactivity of base catalysed hydrolysis of 2-pyridinylmethylene-8-quinolinyl-Schiff base iron(II) iodide complexes: solvent effects. Chemical Papers, 2013, 67, .	2.2	7
49	Synthesis and Physico-Chemical Properties of Some Novel Amino Acid Azo Fe(II) Complexes. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2003, 33, 1081-1104.	0.6	6
50	Catalytic Potential of Mononuclear Cr(III)-Imine Complexes for Selective Oxidation of Benzyl Alcohol by Aqueous H ₂ O ₂ . Journal of Transition Metal Complexes, 2019, 2, 1-14.	0.5	6
51	Salt Effects on Reactivity of Some Fe(II)-Azo Complexes Catalyzing Disproportionation of Hydrogen Peroxide. Monatshefte Für Chemie, 2006, 137, 421-431.	1.8	5
52	Contributions to the Chemistry of Twofold-Coordinated Group 15/14 Element Heterocycles (A) Tj ETQq0 0 0 rgl	3T /Oyerloo	ck 10 Tf 50 14
53	Kinetics of the base hydrolysis of iron (II) complexes with pyridyl–quinolyl Schiff base ligands in aqueous and aqueous/methanol binary mixtures. Journal of the Iranian Chemical Society, 2015, 12, 1521-1528	2.2	5

Rare earth Ce- and Nd-doped spinel nickel ferrites as effective heterogeneous catalysts in the (ep)oxidation of alkenes. Journal of the Iranian Chemical Society, 2020, 17, 3237-3250.

#	Article	IF	CITATIONS
55	Oxidation Efficiencies of High Spin Fe(II)–Azo Amino Acid Complexes by Potassium Peroxydisulfate: Initial State–Transition State Solvation Effects. Journal of Solution Chemistry, 2016, 45, 772-790.	1.2	4
56	Two ionic oxoâ€vanadate and dioxoâ€molybdate complexes of dinitroâ€aroylhydazone derivative: effective catalysts towards epoxidation reactions, biological activity, <i>ct</i> DNA binding, DFT and <i>silico</i> investigations. Applied Organometallic Chemistry, 0, , .	3.5	4
57	Pyrido-anellated 1,3-azaphospholes-current state and future challenges. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 548-557.	1.6	3
58	3H-1,3-Azaphospholo[4,5-b]pyridines – novel heterocyclic P,N-bridging or hybrid ligands: synthesis and first d8-transition metal complexes. Dalton Transactions, 2016, 45, 2261-2272.	3.3	3
59	Novel Benzo-and Pyrido-Anellated 1, 3-Azaphospholes. Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 779-782.	1.6	2
60	Effect of bromide salts on the acid hydrolysis of anti-bacterial hydrophilic Schiff base amino acid iron(II) complexes. Russian Journal of General Chemistry, 2014, 84, 2037-2042.	0.8	2
61	Timeâ€ofâ€flight secondary ion mass spectrometry and gas chromatography–mass spectrometry studies of alkanethiol selfâ€assembled monolayers on nanoporous gold surfaces. Surface and Interface Analysis, 2021, 53, 21-30.	1.8	2
62	Kinetics and mechanism of the reaction of novel low spin Fe(II)-azo amino acid complexes with hydrogen peroxide in aqueous solutions and in aqua-methanol binary mixtures. Kinetics and Catalysis, 2011, 52, 62-71.	1.0	1
63	Phosphonylation of N-Heterocycles and Synthesis of Pyrido-Fused 1,3-Azaphospholes. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 688-693.	1.6	1
64	3-Hydroxy-3-(2-oxo-2,3-dihydro-1H-indol-3-yl)-2,3-dihydro-1H-indol-2-one. IUCrData, 2017, 2, .	0.3	1
65	Kinetics of acid hydrolysis and reactivity of some antibacterial hydrophilic iron(II) imino-complexes. Russian Journal of Physical Chemistry A. 2015, 89, 759-765.	0.6	0