Hua Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1832777/publications.pdf

Version: 2024-02-01

88	2,970	159525	189801
papers	citations	h-index	g-index
89	89	89	1919
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mechanistic insight into the synergistic Cu/Pd-catalyzed carbonylation of aryl iodides using alcohols and dioxygen as the carbonyl source. Science China Chemistry, 2022, 65, 68-74.	4.2	4
2	Anti-obesity effects of galacto-oligosaccharides in obese rats. European Journal of Pharmacology, 2022, 917, 174728.	1.7	6
3	The Microstructure, Antibacterial and Antitumor Activities of Chitosan Oligosaccharides and Derivatives. Marine Drugs, 2022, 20, 69.	2.2	50
4	Construction of Chiral Cyclic Compounds Enabled by Enantioselective Photocatalysis. Molecules, 2022, 27, 359.	1.7	0
5	Cu(II)-Catalyzed C–H Amidation/Cyclization of Azomethine Imines with Dioxazolones via Acyl Nitrenes: A Direct Access to Diverse 1,2,4-Triazole Derivatives. Organic Letters, 2022, 24, 613-618.	2.4	21
6	Mechanochemically Induced Dehydrogenation Coupling and [3+2] Cycloaddition of Indolizines with Allenes Using Piezoelectric Materials. Journal of Organic Chemistry, 2022, 87, 3265-3275.	1.7	17
7	Applications and Biocompatibility of Mesoporous Silica Nanocarriers in the Field of Medicine. Frontiers in Pharmacology, 2022, 13, 829796.	1.6	13
8	Transition metal- and oxidant-free [3 + 2] cyclization of azomethine imines utilizing vinylene carbonate as dual synthons. Organic Chemistry Frontiers, 2022, 9, 2529-2533.	2.3	10
9	Deconstructive Cycloaromatization Strategy toward <i>N</i> , <i>O</i> -Bidentate Ligands from Indolizines and Cyclopropenones. Organic Letters, 2022, 24, 3238-3243.	2.4	12
10	Biodegradation and Prospect of Polysaccharide from Crustaceans. Marine Drugs, 2022, 20, 310.	2.2	9
11	Lewis Acid-Catalyzed Synthesis of Polysubstituted Furans from Conjugated Ene-yne-ketones and 1,3,5-Triazinanes. Journal of Organic Chemistry, 2022, 87, 7056-7063.	1.7	7
12	Marine Chitooligosaccharide Alters Intestinal Flora Structure and Regulates Hepatic Inflammatory Response to Influence Nonalcoholic Fatty Liver Disease. Marine Drugs, 2022, 20, 383.	2.2	11
13	Targeted treatment of alcoholic liver disease based on inflammatory signalling pathways. , 2021, 222, 107752.		20
14	Dithiolation indolizine exerts viability suppression effects on A549 cells via triggering intrinsic apoptotic pathways and inducing G2/M phase arrest. Biomedicine and Pharmacotherapy, 2021, 133, 110961.	2.5	12
15	Protective effect and mechanism of chitooligosaccharides on acetaminophen-induced liver injury. Food and Function, 2021, 12, 9979-9993.	2.1	16
16	Electrochemical oxidative cyclization of alkenes, boronic acids, and dichalcogenides to access chalcogenated boronic esters and 1,3-diols. Organic Chemistry Frontiers, 2021, 9, 12-18.	2.3	11
17	Switchable hydroxysulfonyloxylation and defluorination–decarboxylation sulfonylation of <i>yem</i> -difluoroalkenes with sodium sulfinate <i>via</i> aerobic oxidation. Organic Chemistry Frontiers, 2021, 8, 6220-6225.	2.3	4
18	Regioselective Câ€"H dithiocarbamation of indolizines with tetraalkylthiuram disulfide under metal-free conditions. Organic and Biomolecular Chemistry, 2021, 19, 5284-5288.	1.5	14

#	Article	IF	Citations
19	Effect of different bile acids on the intestine through enterohepatic circulation based on FXR. Gut Microbes, 2021, 13, 1949095.	4.3	45
20	Access to diverse primary, secondary, and tertiary amines via the merger of controllable cleavage of triazines and site-selective functionalization. Organic Chemistry Frontiers, 2021, 8, 4706-4714.	2.3	17
21	Rhodium(<scp>iii</scp>)-catalyzed Câ€"H/Câ€"F activation sequence: expedient and divergent synthesis of 2-benzylated indoles and 2,2′-bis(indolyl)methanes. Organic Chemistry Frontiers, 2021, 8, 4445-4451.	2.3	12
22	Lewis acid-catalyzed regioselective C–H carboxamidation of indolizines with dioxazolones <i>via</i> an acyl nitrene type rearrangement. Organic Chemistry Frontiers, 2021, 8, 2583-2588.	2.3	20
23	Visible Light-Induced Cascade Cyclization of 3-Aminoindazoles, Ynals, and Chalcogens: Access to Chalcogen-Containing Pyrimido $[1,2-\langle i\rangle b\langle ji\rangle]$ -indazoles. Organic Letters, 2021, 23, 2754-2759.	2.4	37
24	Controllable Site-Selective Construction of 2- and 4-Substituted Pyrimido $[1,2-\langle i\rangle b\langle j\rangle]$ indazole from 3-Aminoindazoles and Ynals. Journal of Organic Chemistry, 2021, 86, 9107-9116.	1.7	18
25	A Novel Imidazo[1,2-a]pyridine Compound Reduces Cell Viability and Induces Apoptosis of HeLa Cells by p53/Bax-Mediated Activation of Mitochondrial Pathway. Anti-Cancer Agents in Medicinal Chemistry, 2021, 21, .	0.9	1
26	Mechanochemical Synthesis of 1,2-Diketoindolizine Derivatives from Indolizines and Epoxides Using Piezoelectric Materials. Organic Letters, 2021, 23, 7171-7176.	2.4	34
27	Application on the Construction of Imidazo[1,2- <i>a</i>)pyridines C-3 Canbon-Hetero Bonds by Visible-Light Catalysis and Electrochemistry. Chinese Journal of Organic Chemistry, 2021, , 1759.	0.6	5
28	Non-shivering Thermogenesis Signalling Regulation and Potential Therapeutic Applications of Brown Adipose Tissue. International Journal of Biological Sciences, 2021, 17, 2853-2870.	2.6	30
29	Advances in the preparation and assessment of the biological activities of chitosan oligosaccharides with different structural characteristics. Food and Function, 2021, 12, 926-951.	2.1	32
30	Recent advances in the synthesis of indolizine and its derivatives by radical cyclization/cross-coupling. Organic and Biomolecular Chemistry, 2021, 19, 10245-10258.	1.5	35
31	Photoinduced successive oxidative ring-opening and borylation of indolizines with NHC–boranes. RSC Advances, 2021, 12, 470-474.	1.7	2
32	Electrochemical diselenylation of indolizines <i>via</i> intermolecular C–Se formation with 2-methylpyridines, α-bromoketones and diselenides. Chemical Communications, 2020, 56, 735-738.	2.2	58
33	Triflic Acid-Catalyzed Cycloisomerization of 1,6-Enynes: Facile Access to Carbo- and Azaheterocycles. Journal of Organic Chemistry, 2020, 85, 2406-2414.	1.7	3
34	Synthesis of Pyrrolo[2,1,5- <i>cd</i>]indolizine Rings via Visible-Light-Induced Intermolecular [3+2] Cycloaddition of Indolizines and Alkynes. Journal of Organic Chemistry, 2020, 85, 10719-10727.	1.7	29
35	High-Performance Cataluminescence Sensor Based on Nanosized V2O5 for 2-Butanone Detection. Molecules, 2020, 25, 3552.	1.7	12
36	Palladiumâ€Catalyzed Câ€N Bond Formation: A Straightforward Alkoxymethylation Process for the Synthesis of the C1 and C3â€Dialkoxy Indoles. ChemistrySelect, 2020, 5, 15148-15152.	0.7	3

#	Article	IF	Citations
37	Electrochemical regioselective selenylation/oxidation of ⟨i⟩N⟨/i⟩-alkylisoquinolinium salts ⟨i⟩via⟨/i⟩ double C(sp⟨sup⟩2⟨/sup⟩)–H bond functionalization. Chemical Communications, 2020, 56, 15325-15328.	2.2	24
38	Controllable Site-Selective Construction of 4- and 5-Hydroxyalkyl-Substituted Imidazoles from Amidines, Ynals, and Water. Journal of Organic Chemistry, 2020, 85, 14954-14962.	1.7	12
39	Chitosan oligosaccharide ameliorated obesity by reducing endoplasmic reticulum stress in diet-induced obese rats. Food and Function, 2020, 11, 6285-6296.	2.1	24
40	Cu(I)-Catalyzed Three-Component Cyclization for the Construction of Functionalized Thiazoles. Journal of Organic Chemistry, 2020, 85, 10118-10124.	1.7	13
41	Visible-Light-Induced Regioselective Dicarbonylation of Indolizines with Oxoaldehydes via Direct C–H Functionalization. Organic Letters, 2020, 22, 3841-3845.	2.4	40
42	Connection between gut microbiome and the development of obesity. European Journal of Clinical Microbiology and Infectious Diseases, 2019, 38, 1987-1998.	1.3	48
43	Transition-Metal-Free Three-Component Reaction: Additive Controlled Synthesis of Sulfonylated Imidazoles. Journal of Organic Chemistry, 2019, 84, 11348-11358.	1.7	21
44	A Novel Indolizine Derivative Induces Apoptosis Through the Mitochondria p53 Pathway in HepG2 Cells. Frontiers in Pharmacology, 2019, 10, 762.	1.6	20
45	A visible-light-induced intermolecular [3 + 2] alkenylation–cyclization strategy: metal-free construction of pyrrolo[2,1,5- <i>cd</i>]indolizine rings. Green Chemistry, 2019, 21, 4025-4029.	4.6	35
46	Znâ€Catalyzed [3+2]â€Annulation Strategy: Straightforward Access to Aminoalkyl Indolizines. European Journal of Organic Chemistry, 2019, 2019, 6611-6617.	1.2	5
47	Mn(OAc) ₃ â€Mediated Regioselective Câ€H Phosphonylation of Indolizines with <i>H</i> â€Phosphonates. ChemistrySelect, 2019, 4, 1117-1120.	0.7	15
48	Therapeutic Effect of Chitooligosaccharide Tablets on Lipids in High-Fat Diets Induced Hyperlipidemic Rats. Molecules, 2019, 24, 514.	1.7	41
49	Highly Regioselective, Acid-Catalyzed, Three-Component Cascade Reaction for the Synthesis of 2-aminopyridine-Decorated Imidazo[1,2- <i>a</i>) pyridine. ACS Combinatorial Science, 2019, 21, 149-153.	3.8	11
50	Metal-Free C–B Bond Cleavage: An Acid Catalyzed Three-Component Reaction Construction of Imidazole-Containing Triarylmethanes. Organic Letters, 2019, 21, 4420-4423.	2.4	25
51	Strategies for Synthesis of Imidazo[1,2â€ <i>a</i>]pyridine Derivatives: Carbene Transformations or Câ^'H Functionalizations. Chemical Record, 2019, 19, 2105-2118.	2.9	39
52	Beneficial Metabolic Effects of Chitosan and Chitosan Oligosaccharide on Epididymal WAT Browning and Thermogenesis in Obese Rats. Molecules, 2019, 24, 4455.	1.7	20
53	Chloride channelâ€3 mediates multidrug resistance of cancer by upregulating Pâ€glycoprotein expression. Journal of Cellular Physiology, 2019, 234, 6611-6623.	2.0	27
54	One-Pot Regiospecific Synthesis of Indolizines: A Solvent-Free, Metal-Free, Three-Component Reaction of 2-(Pyridin-2-yl)acetates, Ynals, and Alcohols or Thiols. Organic Letters, 2018, 20, 2477-2480.	2.4	55

#	Article	IF	CITATIONS
55	Transition-Metal-Free Regioselective Cross-Coupling: Controlled Synthesis of Mono- or Dithiolation Indolizines. Organic Letters, 2018, 20, 3291-3295.	2.4	48
56	Access to sulfonylated furans or imidazo[1,2- <i>a</i>]pyridines <i>via</i> a metal-free three-component, domino reaction. Organic Chemistry Frontiers, 2018, 5, 2219-2223.	2.3	22
57	Silver-catalyzed [3 + 2] domino reaction: an efficient strategy to synthesize imidazole-5-carbaldehydes. Organic and Biomolecular Chemistry, 2017, 15, 6463-6466.	1.5	14
58	Substrate-Controlled Selectivity Switch in a Three-Component Reaction: A Ag-Catalyzed Strategy for the Synthesis of Functionalized Imidazoles. Journal of Organic Chemistry, 2017, 82, 9144-9153.	1.7	28
59	Ag-Catalyzed Tandem Three-Component Reaction toward the Synthesis of Multisubstituted Imidazoles. Journal of Organic Chemistry, 2017, 82, 13740-13745.	1.7	32
60	A Carbonylation Approach Toward Activation of C _{sp2} -H and C _{sp3} -H Bonds: Cu-Catalyzed Regioselective Cross Coupling of Imidazo[1,2- <i>a</i>) pyridines with Methyl Hetarenes. Organic Letters, 2016, 18, 3582-3585.	2.4	86
61	A one pot, metal-free, three-component domino sequence for the synthesis of furans: an efficient C–O and C–N bond formation approach. RSC Advances, 2016, 6, 39563-39567.	1.7	14
62	Regioselective Copperâ€Catalyzed Oxidative Crossâ€Coupling of Imidazo[1,2â€ <i>a</i>)]pyridines with Methyl Ketones: An Efficient Route for Synthesis of 1,2â€Diketones. Advanced Synthesis and Catalysis, 2016, 358, 67-73.	2.1	77
63	Regioselective Oxidative Homocoupling Reaction: An Efficient Copperâ€Catalyzed Synthesis of Biimidazo[1,2â€∢i>a⟨ i>]pyridines. Advanced Synthesis and Catalysis, 2015, 357, 3109-3114.	2.1	67
64	Regioselective copper-catalyzed thiolation of imidazo[1,2-a]pyridines: an efficient C–H functionalization strategy for C–S bond formation. RSC Advances, 2015, 5, 22356-22360.	1.7	42
65	Copperâ€Catalyzed Regioselective C5 Sulfenylation of Imidazo[2,1â€ <i>b</i> jthiazoles with Thiols. Asian Journal of Organic Chemistry, 2015, 4, 312-315.	1.3	21
66	Microwave-assisted Câ€"N and Câ€"S bond-forming reactions: an efficient three-component domino sequence for the synthesis of sulfoether-decorated imidazo[1,2-a]pyridines. RSC Advances, 2015, 5, 32205-32209.	1.7	16
67	Regioselective Copper-Catalyzed Dicarbonylation of Imidazo[1,2- <i>a</i>)pyridines with N,N-Disubstituted Acetamide or Acetone: An Approach to 1,2-Diketones Using Molecular Oxygen. Journal of Organic Chemistry, 2015, 80, 12725-12732.	1.7	82
68	Goldâ€Catalyzed Synthesis of 3â€Acylimidazo[1,2â€ <i>a</i>]pyridines <i>via</i> Carbene Oxidation. Advanced Synthesis and Catalysis, 2015, 357, 46-50.	2.1	58
69	Cu-Catalyzed selective C3-formylation of imidazo[1,2-a]pyridine C–H bonds with DMSO using molecular oxygen. Chemical Communications, 2015, 51, 1823-1825.	2.2	175
70	One-Pot Regiospecific Synthesis of Imidazo[1,2- <i>a</i>]pyridines: A Novel, Metal-Free, Three-Component Reaction for the Formation of C–N, C–O, and C–S Bonds. Organic Letters, 2014, 16, 146-149.	2.4	120
71	Transition Metal-Mediated Câ•O and Câ•C Bond-Forming Reactions: A Regioselective Strategy for the Synthesis of Imidazo[1,2- <i>a</i>) pyridines and Imidazo[1,2- <i>a</i>) pyrazines. Journal of Organic Chemistry, 2014, 79, 11209-11214.	1.7	62
72	Ruthenium-catalyzed direct C-3 oxidative olefination of imidazo[1,2-a]pyridines. RSC Advances, 2014, 4, 32013-32016.	1.7	42

#	Article	IF	CITATIONS
73	Palladium(<scp>ii</scp>)-catalyzed intermolecular oxidative C-3 alkenylations of imidazo[1,2-a]pyridines by substrate-contolled regioselective Câ€"H functionalization. RSC Advances, 2014, 4, 50137-50140.	1.7	27
74	Highly regioselective palladium-catalyzed direct cross-coupling of imidazo[1,2-a]pyridines with arylboronic acids. Catalysis Communications, 2014, 56, 65-67.	1.6	28
75	Regioselective C3 Alkenylation of 4 <i>H</i> â€pyrido[1,2â€ <i>a</i>]pyrimidinâ€4â€ones via Palladiumâ€Cata CH Activation. Chemistry - an Asian Journal, 2014, 9, 2436-2439.	alyzed 1.7	22
76	Photocatalytic degradation kinetics and mechanism of phenobarbital in TiO2 aqueous solution. Chemosphere, 2013, 90, 1514-1519.	4.2	26
77	Copper-Catalyzed C–O Bond Formation: An Efficient One-Pot Highly Regioselective Synthesis of Furans from (2-Furyl)Carbene Complexes. Organic Letters, 2013, 15, 1080-1083.	2.4	123
78	Palladiumâ€Catalyzed Formation of C=C Bonds: A Regioselective Strategy for the Synthesis of 2â€Vinylfurans by 1,2â€H Shift of Palladium–Carbene Complexes. European Journal of Organic Chemistry, 2013, 2013, 2284-2287.	1.2	38
79	Goldâ€Catalyzed Multicomponent Reaction: Facile Strategy for the Synthesis of <i>N</i> â€Substituted 1,4â€Dihydropyridines by Using Activated Alkynes, Aldehydes, and Methanamine. European Journal of Organic Chemistry, 2013, 2013, 7300-7304.	1.2	18
80	CuO/CNTs-catalyzed heterogeneous process: a convenient strategy to prepare furan derivatives from electron-deficient alkynes and î±-hydroxy ketones. Green Chemistry, 2012, 14, 2710.	4.6	24
81	Highly regioselective C–H bond functionalization: palladium-catalyzed arylation of substituted imidazo[1,2-a]pyridine with aryl chlorides. RSC Advances, 2012, 2, 5972.	1.7	47
82	Direct Arylation of Imidazo[1,2- <i>a</i>]pyridine at C-3 with Aryl Iodides, Bromides, and Triflates via Copper(I)-Catalyzed C–H Bond Functionalization. Organic Letters, 2012, 14, 1688-1691.	2.4	155
83	An Efficient and General Ironâ€Catalyzed Oneâ€Pot Synthesis of Furans via αâ€Hydroxy Ketones and Activated Alkynes. European Journal of Organic Chemistry, 2012, 2012, 2318-2322.	1.2	24
84	Pd-Catalyzed cyclization reaction: a convenient domino process for synthesis of \hat{l}_{\pm} -carbonyl furan derivatives. Organic and Biomolecular Chemistry, 2011, 9, 7313.	1.5	29
85	Silverâ€Catalyzed Oneâ€Pot Cyclization Reaction of Electron―Deficient Alkynes and 2â€Ynâ€1â€ols: An Efficien Domino Process to Polysubstituted Furans. Advanced Synthesis and Catalysis, 2010, 352, 143-152.	t 2.1	68
86	Nanoâ€Cu ₂ Oâ€Catalyzed Formation of CC and CO Bonds: Oneâ€Pot Domino Process for Regioselective Synthesis of αâ€Carbonyl Furans from Electronâ€Deficient Alkynes and 2â€Ynâ€1â€ols. Chemistry A European Journal, 2010, 16, 10553-10559.	1.7	58
87	Copper-Catalyzed Domino Rearrangement/Dehydrogenation Oxidation/Carbene Oxidation for One-Pot Regiospecific Synthesis of Highly Functionalized Polysubstituted Furans. Organic Letters, 2009, 11, 1931-1933.	2.4	115
88	Development, Scope and Mechanisms of Multicomponent Reactions of Asymmetric Electronâ€Deficient Alkynes with Amines and Formaldehyde. Chemistry - A European Journal, 2008, 14, 11623-11633.	1.7	56