Jimmy D Ballard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1832746/publications.pdf

Version: 2024-02-01

		361413	206112
53	2,398	20	48
papers	citations	h-index	g-index
55	55	55	2269
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Autoinducing peptide-based quorum signaling systems in Clostridioides difficile. Current Opinion in Microbiology, 2022, 65, 81-86.	5.1	7
2	Identification of ClpP Dual Isoform Disruption as an Antisporulation Strategy for Clostridioides difficile. Journal of Bacteriology, 2022, 204, JB0041121.	2.2	3
3	Clostridioides difficile Toxin B Activates Group 3 Innate Lymphocytes. Infection and Immunity, 2022, 90, e0007322.	2.2	3
4	\hat{l}_{\pm} -galactosylceramide-reactive NKT cells increase IgG1 class switch against a C. difficile polysaccharide antigen and enhance immunity against a live pathogen challenge. Infection and Immunity, 2021, 89, e0043821.	2.2	5
5	The Murine Neonatal Fc Receptor Is Required for Transport of Immunization-Induced C. difficile-Specific IgG to the Gut and Protection against Disease but Does Not Affect Disease Susceptibility. Infection and Immunity, 2021, 89, e0027421.	2.2	3
6	Use of a Clostridioides difficile Murine Immunization and Challenge Model to Evaluate Single and Combination Vaccine Adjuvants Consisting of Alum and NKT Cell-Activating Ligands. Frontiers in Immunology, 2021, 12, 818734.	4.8	3
7	Recommendations for future university pandemic responses: What the first COVID-19 shutdown taught us. PLoS Biology, 2020, 18, e3000889.	5.6	21
8	Clostridioides difficile Infection Induces an Inferior IgG Response to That Induced by Immunization and Is Associated with a Lack of T Follicular Helper Cell and Memory B Cell Expansion. Infection and Immunity, 2020, 88, .	2.2	12
9	Toxin-neutralizing antibodies elicited by naturally acquired cutaneous anthrax are elevated following severe disease and appear to target conformational epitopes. PLoS ONE, 2020, 15, e0230782.	2.5	7
10	Combined and Distinct Roles of Agr Proteins in Clostridioides difficile 630 Sporulation, Motility, and Toxin Production. MBio, 2020, 11 , .	4.1	24
11	Human C. difficile toxin–specific memory B cell repertoires encode poorly neutralizing antibodies. JCI Insight, 2020, 5, .	5.0	8
12	Deletion of a 19-Amino-Acid Region in Clostridioides difficile TcdB2 Results in Spontaneous Autoprocessing and Reduced Cell Binding and Provides a Nontoxic Immunogen for Vaccination. Infection and Immunity, 2019, 87, .	2.2	3
13	<i>Clostridium difficile</i> ClpP Homologues are Capable of Uncoupled Activity and Exhibit Different Levels of Susceptibility to Acyldepsipeptide Modulation. ACS Infectious Diseases, 2019, 5, 79-89.	3.8	22
14	Cell-penetrating peptides derived from Clostridium difficile TcdB2 and a related large clostridial toxin. Journal of Biological Chemistry, 2018, 293, 1810-1819.	3.4	7
15	Unique, Intersecting, and Overlapping Roles of C/EBP \hat{l}^2 and CREB in Cells of the Innate Immune System. Scientific Reports, 2018, 8, 16931.	3.3	8
16	Pathogens boosted by food additive. Nature, 2018, 553, 285-286.	27.8	3
17	Insights From Analysis of Human Antigen-Specific Memory B Cell Repertoires. Frontiers in Immunology, 2018, 9, 3064.	4.8	17
18	Intrinsic Toxin-Derived Peptides Destabilize and Inactivate <i>Clostridium difficile</i> TcdB. MBio, 2017, 8, .	4.1	14

#	Article	IF	CITATIONS
19	Amino Acid Differences in the 1753-to-1851 Region of TcdB Influence Variations in TcdB1 and TcdB2 Cell Entry. MSphere, 2017, 2, .	2.9	8
20	Anthrax Vaccine Precipitated Induces Edema Toxin-Neutralizing, Edema Factor-Specific Antibodies in Human Recipients. Vaccine Journal, 2017, 24, .	3.1	14
21	Coordination between T helper cells, iNKT cells, and their follicular helper subsets in the humoral immune response against <i>Clostridium difficile</i> toxin B. Journal of Leukocyte Biology, 2017, 101, 567-576.	3.3	14
22	Memory B Cells Encode Neutralizing Antibody Specific for Toxin B from the Clostridium difficile Strains VPI 10463 and NAP1/BI/027 but with Superior Neutralization of VPI 10463 Toxin B. Infection and Immunity, 2016, 84, 194-204.	2.2	13
23	Immunization of Mice with Anthrax Protective Antigen Limits Cardiotoxicity but Not Hepatotoxicity Following Lethal Toxin Challenge. Toxins, 2015, 7, 2371-2384.	3.4	3
24	Exposure of Neutralizing Epitopes in the Carboxyl-terminal Domain of TcdB Is Altered by a Proximal Hypervariable Region. Journal of Biological Chemistry, 2015, 290, 6975-6985.	3.4	22
25	Variations in Virulence and Molecular Biology among Emerging Strains of Clostridium difficile. Microbiology and Molecular Biology Reviews, 2013, 77, 567-581.	6.6	96
26	Clostridium difficile 027/BI/NAP1 Encodes a Hypertoxic and Antigenically Variable Form of TcdB. PLoS Pathogens, 2013, 9, e1003523.	4.7	70
27	Increased cAMP in Monocytes Augments Notch Signaling Mechanisms by Elevating RBP-J and Transducin-like Enhancer of Split (TLE). Journal of Biological Chemistry, 2013, 288, 21526-21536.	3.4	21
28	TcdB from hypervirulent <i>Clostridium difficile</i> exhibits increased efficiency of autoprocessing. Molecular Microbiology, 2012, 84, 66-76.	2.5	34
29	Glycogen Synthase Kinase 3 Activation Is Important for Anthrax Edema Toxin-Induced Dendritic Cell Maturation and Anthrax Toxin Receptor 2 Expression in Macrophages. Infection and Immunity, 2011, 79, 3302-3308.	2.2	20
30	Adenomatous Polyposis Coli Protein Associates with C/EBP \hat{l}^2 and Increases Bacillus anthracis Edema Toxin-stimulated Gene Expression in Macrophages. Journal of Biological Chemistry, 2011, 286, 19364-19372.	3.4	9
31	Regulation of Anthrax Toxin-Specific Antibody Titers by Natural Killer T Cell-Derived IL-4 and IFN \hat{I}^3 . PLoS ONE, 2011, 6, e23817.	2.5	18
32	Clostridium difficile Infection. American Journal of the Medical Sciences, 2010, 340, 247-252.	1.1	115
33	CD1d-Dependent B-Cell Help by NK-Like T Cells Leads to Enhanced and Sustained Production of <i>Bacillus anthracis</i> Lethal Toxin-Neutralizing Antibodies. Infection and Immunity, 2010, 78, 1610-1617.	2.2	31
34	Variations in TcdB Activity and the Hypervirulence of Emerging Strains of Clostridium difficile. PLoS Pathogens, 2010, 6, e1001061.	4.7	112
35	A toxin contest. Nature, 2010, 467, 665-666.	27.8	15
36	Sequential B-Cell Epitopes of <i>Bacillus anthracis </i> Lethal Factor Bind Lethal Toxin-Neutralizing Antibodies. Infection and Immunity, 2009, 77, 162-169.	2.2	28

#	Article	IF	Citations
37	The Major Neutralizing Antibody Responses to Recombinant Anthrax Lethal and Edema Factors Are Directed to Non-Cross-Reactive Epitopes. Infection and Immunity, 2009, 77, 4714-4723.	2.2	21
38	Bacillus anthracis Lethal Toxin Disrupts TCR Signaling in CD1d-Restricted NKT Cells Leading to Functional Anergy. PLoS Pathogens, 2009, 5, e1000588.	4.7	30
39	<i>Bacillus anthracis</i> Edema Toxin Activates Nuclear Glycogen Synthase Kinase $3\hat{l}^2$. Infection and Immunity, 2008, 76, 4895-4904.	2.2	21
40	Elucidating thein vivotargets of bacterial toxins. Future Microbiology, 2007, 2, 85-92.	2.0	6
41	Critical intermediate steps in Clostridium sordellii lethal toxin-induced apoptosis. Biochemical and Biophysical Research Communications, 2007, 363, 959-964.	2.1	12
42	Identification of <i>Clostridium difficile</i> toxin B cardiotoxicity using a zebrafish embryo model of intoxication. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14176-14181.	7.1	72
43	Cytotoxic activity of Bacillus anthracis protective antigen observed in a macrophage cell line overexpressing ANTXR1. Cellular Microbiology, 2006, 8, 1272-1281.	2.1	19
44	Variations in lethal toxin and cholesterol-dependent cytolysin production correspond to differences in cytotoxicity among strains of Clostridium sordellii. FEMS Microbiology Letters, 2006, 259, 295-302.	1.8	36
45	Bacillus anthracis oedema toxin as a cause of tissue necrosis and cell type-specific cytotoxicity. Cellular Microbiology, 2005, 7, 1139-1149.	2.1	51
46	<i>Clostridium difficile</i> Toxins: Mechanism of Action and Role in Disease. Clinical Microbiology Reviews, 2005, 18, 247-263.	13.6	999
47	Clostridium sordellii Lethal Toxin Is Maintained in a Multimeric Protein Complex. Infection and Immunity, 2004, 72, 3366-3372.	2.2	10
48	Decreased glycogen synthase kinase 3-beta levels and related physiological changes in Bacillus anthracis lethal toxin-treated macrophages. Cellular Microbiology, 2003, 5, 523-532.	2.1	32
49	Toxin-induced resistance in Bacillus anthracis lethal toxin-treated macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12426-12431.	7.1	38
50	Cytosolic Delivery and Characterization of the TcdB Glucosylating Domain by Using a Heterologous Protein Fusion. Infection and Immunity, 2001, 69, 599-601.	2.2	29
51	pH-Enhanced Cytopathic Effects ofClostridium sordellii Lethal Toxin. Infection and Immunity, 2001, 69, 5487-5493.	2.2	38
52	pH-Induced Conformational Changes in <i>Clostridium difficile</i> Toxin B. Infection and Immunity, 2000, 68, 2470-2474.	2.2	146
53	Anthrax Toxin as a Molecular Tool for Stimulation of Cytotoxic T Lymphocytes: Disulfide-Linked Epitopes, Multiple Injections, and Role of CD4 ⁺ Cells. Infection and Immunity, 1998, 66, 4696-4699.	2.2	24