
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1832671/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative evaluation of the antioxidant capacity of smoke flavouring phenols by crocin bleaching inhibition, DPPH radical scavenging and oxidation potential. Food Chemistry, 2007, 100, 1481-1489.	8.2	143
2	Pencilâ€drawn paper supported electrodes as simple electrochemical detectors for paperâ€based fluidic devices. Electrophoresis, 2013, 34, 2085-2091.	2.4	121
3	An electrochemical gas sensor based on paper supported room temperature ionic liquids. Lab on A Chip, 2012, 12, 153-158.	6.0	103
4	Electrochemical Detection of Trace Hydrogen Sulfide in Gaseous Samples by Porous Silver Electrodes Supported on Ion-Exchange Membranes (Solid Polymer Electrolytes). Analytical Chemistry, 1995, 67, 318-323.	6.5	94
5	Effect of TiO2 photocatalytic activity in a HDPE-based food packaging on the structural and microbiological stability of a short-ripened cheese. Food Chemistry, 2013, 138, 1633-1640.	8.2	84
6	Pencilâ€Drawn Dual Electrode Detectors to Discriminate Between Analytes Comigrating on Paperâ€Based Fluidic Devices but Undergoing Electrochemical Processes with Different Reversibility. Electroanalysis, 2013, 25, 2515-2522.	2.9	66
7	Electroanalytical sensors for nonconducting media based on electrodes supported on perfluorinated ion-exchange membranes. Electroanalysis, 1997, 9, 433-443.	2.9	59
8	Doped pencil leads for drawing modified electrodes on paper-based electrochemical devices. Journal of Electroanalytical Chemistry, 2014, 722-723, 90-94.	3.8	57
9	Pencil leads doped with electrochemically deposited Ag and AgCl for drawing reference electrodes on paper-based electrochemical devices. Electrochimica Acta, 2014, 146, 518-524.	5.2	52
10	Deep Eutectic Solvents (DESs) and Their Application in Biosensor Development. Sensors, 2021, 21, 4263.	3.8	52
11	Amperometric monitoring of hydrogen peroxide in workplace atmospheres by electrodes supported on ion-exchange membranes. Journal of Electroanalytical Chemistry, 2001, 514, 123-128.	3.8	45
12	Room Temperature Ionic Liquids As Useful Overlayers for Estimating Food Quality from Their Odor Analysis by Quartz Crystal Microbalance Measurements. Analytical Chemistry, 2013, 85, 7241-7247.	6.5	45
13	Relationship between redox potential and chain-breaking activity of model systems and foods. Food Chemistry, 2004, 88, 79-83.	8.2	42
14	Application of microchip electrophoresis with electrochemical detection to environmental aldehyde monitoring. Electrophoresis, 2009, 30, 3465-3471.	2.4	42
15	Anodic stripping voltammetry with gold electrodes as an alternative method for the routine determination of mercury in fish. Comparison with spectroscopic approaches. Food Chemistry, 2017, 221, 737-745.	8.2	42
16	A modified electrode for the electrochemical detection of biogenic amines and their amino acid precursors separated by microchip capillary electrophoresis. Electrophoresis, 2011, 32, 906-912.	2.4	40
17	Amperometric monitoring of sulphur dioxide in liquid and air samples of low conductivity by electrodes supported on ion-exchange membranes. Analyst, The, 1991, 116, 797.	3.5	38
18	Pulsed amperometric detection of ethanol in breath by gold electrodes supported on ion exchange membranes (solid polymer electrolytes). Electroanalysis, 1996, 8, 544-548.	2.9	37

#	Article	IF	CITATIONS
19	An oxygen amperometric gas sensor based on its electrocatalytic reduction in room temperature ionic liquids. Journal of Electroanalytical Chemistry, 2012, 670, 23-29.	3.8	37
20	Anodic electrodeposition of iridium oxide particles on glassy carbon surfaces and their electrochemical/SEM/XPS characterization. Journal of Electroanalytical Chemistry, 2015, 736, 147-152.	3.8	37
21	Digitally Controlled Procedure for Assembling Fully Drawn Paper-Based Electroanalytical Platforms. Analytical Chemistry, 2017, 89, 10454-10460.	6.5	36
22	Characterization of antioxidant effect of procyanidins. Methods in Enzymology, 2001, 335, 338-350.	1.0	35
23	A Membrane Free Amperometric Gas Sensor Based on Room Temperature Ionic Liquids for the Selective Monitoring of NO _{<i>x</i>} . Electroanalysis, 2012, 24, 865-871.	2.9	33
24	Simultaneous determination of derivatized light aldehydes by microchip electrophoresis with electrochemical detection. Journal of Chromatography A, 2008, 1207, 169-174.	3.7	30
25	Rapid Prototyping of Sensors and Conductive Elements by Dayâ€ŧoâ€Đay Writing Tools and Emerging Manufacturing Technologies. Electroanalysis, 2016, 28, 250-264.	2.9	29
26	A paper-based platform with a pencil-drawn dual amperometric detector for the rapid quantification of ortho-diphenols in extravirgin olive oil. Analytica Chimica Acta, 2017, 950, 41-48.	5.4	29
27	Electrochemical gas sensors based on paper-supported room-temperature ionic liquids for improved analysis of acid vapours. Analytical and Bioanalytical Chemistry, 2013, 405, 3571-3577.	3.7	26
28	Simple pencilâ€drawn paperâ€based devices for oneâ€spot electrochemical detection of electroactive species in oil samples. Electrophoresis, 2015, 36, 1830-1836.	2.4	26
29	A cotton thread fluidic device with a wall-jet pencil-drawn paper based dual electrode detector. Analytica Chimica Acta, 2018, 1040, 74-80.	5.4	25
30	Porous Electrodes Supported on Ion-Exchange Membranes as Electrochemical Detectors for Supercritical Fluid Chromatography. Analytical Chemistry, 2004, 76, 2133-2137.	6.5	24
31	An Ionicâ€Liquid Based Probe for the Sequential Preconcentration from Headspace and Direct Voltammetric Detection of Phenols in Wastewaters. Electroanalysis, 2007, 19, 2141-2148.	2.9	24
32	An Effective Gluten Extraction Method Exploiting Pure Choline Chloride-Based Deep Eutectic Solvents (ChCl-DESs). Food Analytical Methods, 2017, 10, 4079-4085.	2.6	24
33	A sensor based on electrodes supported on ion-exchange membranes for the flow-injection monitoring of sulphur dioxide in wines and grape juices. Talanta, 2010, 80, 1809-1815.	5.5	22
34	Effect of the sample ionic strength on the preconcentration attained in ion exchange voltammetry. Journal of Electroanalytical Chemistry, 1993, 356, 67-80.	3.8	20
35	Electroanalytical cells pencil drawn on PVC supports and their use for the detection in flexible microfluidic devices. Talanta, 2019, 199, 14-20.	5.5	20
36	Truncated aptamers as selective receptors in a gluten sensor supporting direct measurement in a deep eutectic solvent. Biosensors and Bioelectronics, 2020, 165, 112339.	10.1	20

#	Article	IF	CITATIONS
37	Improved microwave digestion procedure for inductively coupled plasma mass spectrometric determinations of inorganic bromide residues in foodstuffs fumigated with methyl bromide. Analytica Chimica Acta, 2001, 436, 245-252.	5.4	18
38	Quenching of superoxide ions by curcumin. A mechanistic study in acetonitrile. Annali Di Chimica, 2002, 92, 281-8.	0.6	18
39	A Deep Eutectic Solventâ€based Amperometric Sensor for the Detection of Low Oxygen Contents in Gaseous Atmospheres. Electroanalysis, 2016, 28, 757-763.	2.9	17
40	Selection of Antiâ€gluten DNA Aptamers in a Deep Eutectic Solvent. Angewandte Chemie - International Edition, 2018, 57, 12850-12854.	13.8	17
41	Paper-based aptamer-antibody biosensor for gluten detection in a deep eutectic solvent (DES). Analytical and Bioanalytical Chemistry, 2022, 414, 3341-3348.	3.7	16
42	An Effective Label-Free Electrochemical Aptasensor Based on Gold Nanoparticles for Gluten Detection. Nanomaterials, 2022, 12, 987.	4.1	16
43	A comparison among different instrumental approaches for bromide analysis in foodstuffs digested by a suitably modified microwave procedure. Talanta, 2003, 60, 653-662.	5.5	15
44	A simple approach to the hydrodynamic injection in microchip electrophoresis with electrochemical detection. Electrophoresis, 2010, 31, 2541-2547.	2.4	15
45	Sorption of ofloxacin and chrysoidine by grape stalk. A representative case of biomass removal of emerging pollutants from wastewater. Arabian Journal of Chemistry, 2019, 12, 1141-1147.	4.9	15
46	A colorimetric paper-based smart label soaked with a deep-eutectic solvent for the detection of malondialdehyde. Sensors and Actuators B: Chemical, 2021, 329, 129174.	7.8	14
47	Amperometric Sniffer for Volatile Amines Based on Paperâ€Supported Room Temperature Ionic Liquids Enabling Rapid Assessment of Fish Spoilage. Electroanalysis, 2014, 26, 1966-1974.	2.9	13
48	Use of an electrochemical room temperature ionic liquid-based microprobe for measurements in gaseous atmospheres. Sensors and Actuators B: Chemical, 2017, 240, 239-247.	7.8	13
49	Selection of Antiâ€gluten DNA Aptamers in a Deep Eutectic Solvent. Angewandte Chemie, 2018, 130, 13032-13036.	2.0	12
50	Volatile aldehydes sensing in headspace using a room temperature ionic liquid-modified electrochemical microprobe. Talanta, 2019, 197, 522-529.	5.5	12
51	Solid-state cell for the voltammetric determination of trace electroactive ionic species preconcentrated from high-resistive media at electrodes modified by ion-exchange coatings. Analytica Chimica Acta, 1992, 264, 221-228.	5.4	11
52	Amperometric determination of peroxides by glassy carbon electrodes modified with copper-phenanthroline complexes. Electroanalysis, 1996, 8, 151-157.	2.9	11
53	Amperometric Sniffer Based on Electrodes Supported on Ionâ€Exchangers for Monitoring the State of Turning Rancid of Lipids. Electroanalysis, 2010, 22, 645-652.	2.9	11
54	Modified Screen Printed Electrode Suitable for Electrochemical Measurements in Gas Phase. Analytical Chemistry, 2020, 92, 3689-3696.	6.5	11

#	Article	IF	CITATIONS
55	A Nonâ€Enzymatic Carbohydrate Sensor Based on Multiwalled Carbon Nanotubes Modified with Adsorbed Active Gold Particles. Electroanalysis, 2014, 26, 988-995.	2.9	9
56	Simultaneous microdetermination of chlorine, bromine and phosphorus in organic compounds by ion chromatography. Journal of Chromatography A, 1994, 662, 185-190.	3.7	8
57	A Simple Strategy for Easily Assembling 3D Printed Miniaturized Cells Suitable for Simultaneous Electrochemical and Spectrophotometric Analyses. Electroanalysis, 2020, 32, 291-300.	2.9	8
58	3D printed portable instruments based on affordable electronics, smartphones and open-source microcontrollers suitable for monitoring food quality. Microchemical Journal, 2020, 159, 105584.	4.5	8
59	A piezoelectric immunosensor based on antibody entrapment within a non-totally rigid polymeric film. Sensors and Actuators B: Chemical, 2005, 111-112, 331-338.	7.8	7
60	Electrochemical and spectroscopic investigation of a binary Ni-Co oxide active material deposited on graphene/polyvinyl alcohol composite substrate. Journal of Electroanalytical Chemistry, 2017, 791, 117-123.	3.8	6
61	Oxidative behavior of (+)â€catechin in the presence of inactive dry yeasts: a comparison with sulfur dioxide, ascorbic acid and glutathione. Journal of the Science of Food and Agriculture, 2017, 97, 5158-5167.	3.5	5
62	Transmittance measurements on paper soaked with deep eutectic solvents. Microchemical Journal, 2021, 170, 106690.	4.5	5
63	An electrochemical quartz crystal microbalance-based investigation of the properties displayed by electroactive polypyridine films. Analytica Chimica Acta, 1995, 305, 212-218.	5.4	4
64	A Portable Setup for the Voltammetric Determination of Total Mercury in Fish with Solid and Nanostructured Gold Electrodes. Molecules, 2019, 24, 1910.	3.8	4
65	Determination of major, minor and trace elements in Glyceric Macerates and Mother Tinctures and in the starting plant materials. Journal of Pharmaceutical and Biomedical Analysis, 2015, 106, 167-178.	2.8	3
66	A simple procedure for the chromatographic analysis of nanoliter samples. Fresenius' Journal of Analytical Chemistry, 1998, 360, 260-262.	1.5	1
67	ICP-MS determination of toxic-metal release from pumping systems for food processing. Annali Di Chimica, 2002, 92, 289-99.	0.6	1
68	Electrochemical and Structural Modifications of Humic Acids in Aerobically and Anaerobically Incubated Peat. Land, 2021, 10, 1189.	2.9	0
69	Electron donating properties of humic acids in saltmarsh soils reflect soil geochemical characteristics. Geoderma, 2022, 419, 115872.	5.1	О