
Parvinder Pal Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1832661/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transbilayer Lipid Interactions Mediate Nanoclustering of Lipid-Anchored Proteins. Cell, 2015, 161, 581-594.	28.9	333
2	Iron-catalyzed Cross-Coupling of Electron-Deficient Heterocycles and Quinone with Organoboron Species via Innate C–H Functionalization: Application in Total Synthesis of Pyrazine Alkaloid Botryllazine A. Journal of Organic Chemistry, 2013, 78, 2639-2648.	3.2	100
3	Present drug-likeness filters in medicinal chemistry during the hit and lead optimization process: how far can they be simplified?. Drug Discovery Today, 2018, 23, 605-615.	6.4	77
4	Cross-Dehydrogenative Coupling of Azoles with α-C(sp ³)–H of Ethers and Thioethers under Metal-Free Conditions: Functionalization of H–N Azoles via C–H Activation. Journal of Organic Chemistry, 2015, 80, 1929-1936.	3.2	72
5	Regioselective Oxidative C–H Phosphonation of Imidazo[1,2â€ <i>a</i>]pyridines and Related Heteroarenes Mediated by Manganese(III) Acetate. European Journal of Organic Chemistry, 2015, 2015, 6526-6533.	2.4	58
6	Cross-dehydrogenative coupling of α-C(sp ³)–H of ethers/alkanes with C(sp ²)–H of heteroarenes under metal-free conditions. Organic and Biomolecular Chemistry, 2015, 13, 11341-11350.	2.8	57
7	Iron oxide mediated direct C–H arylation/alkylation at α-position of cyclic aliphatic ethers. Chemical Communications, 2011, 47, 5852.	4.1	55
8	Cu–Mn Spinel Oxide Catalyzed Regioselective Halogenation of Phenols and <i>N</i> -Heteroarenes. Journal of Organic Chemistry, 2012, 77, 5823-5828.	3.2	48
9	Cu–Mn spinel oxide catalyzed synthesis of imidazo[1,2-a]pyridines through domino three-component coupling and 5-exo-dig cyclization in water. RSC Advances, 2013, 3, 20869.	3.6	45
10	I ₂ /Aqueous TBHP-Catalyzed Coupling of Amides with Methylarenes/Aldehydes/Alcohols: Metal-Free Synthesis of Imides. Organic Letters, 2016, 18, 3638-3641.	4.6	44
11	Metal-Free, Phosphonium Salt-Mediated Sulfoximination of Azine <i>N</i> -Oxides: Approach for the Synthesis of <i>N</i> -Azine Sulfoximines. Journal of Organic Chemistry, 2016, 81, 5886-5894.	3.2	42
12	Metal-free Cross-Dehydrogenative Coupling of <i>HN</i> -azoles with α-C(sp ³)-H Amides via C–H Activation and Its Mechanistic and Application Studies. Journal of Organic Chemistry, 2017, 82, 1000-1012.	3.2	41
13	Design of Novel 3-Pyrimidinylazaindole CDK2/9 Inhibitors with Potent In Vitro and In Vivo Antitumor Efficacy in a Triple-Negative Breast Cancer Model. Journal of Medicinal Chemistry, 2017, 60, 9470-9489.	6.4	39
14	Functionalization of Alkynes and Alkenes Using a Cascade Reaction Approach: Synthesis of β-Keto Sulfones under Metal-free Conditions. Journal of Organic Chemistry, 2020, 85, 716-725.	3.2	38
15	Nitrofuranyl Methyl Piperazines as New Anti-TB Agents: Identification, Validation, Medicinal Chemistry, and PK Studies. ACS Medicinal Chemistry Letters, 2015, 6, 1041-1046.	2.8	33
16	Room Temperature Metal-Catalyzed Oxidative Acylation of Electron-Deficient Heteroarenes with Alkynes, Its Mechanism, and Application Studies. Journal of Organic Chemistry, 2018, 83, 12420-12431.	3.2	25
17	Synthesis of new generation triazolyl- and isoxazolyl-containing 6-nitro-2,3-dihydroimidazooxazoles as anti-TB agents: in vitro, structure–activity relationship, pharmacokinetics and in vivo evaluation. Organic and Biomolecular Chemistry, 2015, 13, 3610-3624.	2.8	23
18	Physicochemical, pharmacokinetic, efficacy and toxicity profiling of a potential nitrofuranyl methyl piperazine derivative IIIM-MCD-211 for oral tuberculosis therapy via in-silico – in-vitro – in-vivo approach. Pulmonary Pharmacology and Therapeutics, 2018, 48, 151-160.	2.6	22

#	Article	IF	CITATIONS
19	Fusion of Structure and Ligand Based Methods for Identification of Novel CDK2 Inhibitors. Journal of Chemical Information and Modeling, 2017, 57, 1957-1969.	5.4	21
20	Metal free C–H functionalization of diazines and related heteroarenes with organoboron species and its application in the synthesis of a CDK inhibitor, meriolin 1. Organic and Biomolecular Chemistry, 2016, 14, 4312-4320.	2.8	18
21	Effect of Natural Phenolics on Pharmacokinetic Modulation of Bedaquiline in Rat to Assess the Likelihood of Potential Food–Drug Interaction. Journal of Agricultural and Food Chemistry, 2020, 68, 1257-1265.	5.2	18
22	Intramolecular aglycon delivery for (1→2)-β-mannosylation: towards the synthesis of phospholipomannan of Candida albicans. Tetrahedron Letters, 2014, 55, 2945-2947.	1.4	17
23	Assessment of preclinical drug interactions of bedaquiline by a highly sensitive LC-ESI-MS/MS based bioanalytical method. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2019, 1112, 48-55.	2.3	14
24	Synthesis of new fluorescently labeled glycosylphosphatidylinositol (GPI) anchors. Tetrahedron Letters, 2011, 52, 4277-4279.	1.4	13
25	Stereoselective Synthesis of Nonpsychotic Natural Cannabidiol and Its Unnatural/Terpenyl/Tail-Modified Analogues. Journal of Organic Chemistry, 2022, 87, 4489-4498.	3.2	13
26	Synthesis and Biological Evaluation of Polar Functionalities Containing Nitrodihydroimidazooxazoles as Anti-TB Agents. ACS Medicinal Chemistry Letters, 2015, 6, 1059-1064.	2.8	12
27	Potential Inhibitors Against NDM-1 Type Metallo-β-Lactamases: An Overview. Microbial Drug Resistance, 2020, 26, 1568-1588.	2.0	12
28	Synthesis and immunopotentiating activity of novel isoxazoline functionalized coumarins. European Journal of Medicinal Chemistry, 2016, 123, 90-104.	5.5	11
29	Metal-free, room temperature, acid-K ₂ S ₂ O ₈ mediated method for the nitration of olefins: an easy approach for the synthesis of nitroolefins. RSC Advances, 2019, 9, 30428-30431.	3.6	9
30	Functionalized Nitroimidazole Scaffold Construction and Their Pharmaceutical Applications: A 1950–2021 Comprehensive Overview. Pharmaceuticals, 2022, 15, 561.	3.8	9
31	Synthesis of non-hydrolysable mimics of glycosylphosphatidylinositol (GPI) anchors. Organic and Biomolecular Chemistry, 2014, 12, 1163.	2.8	8
32	Total Synthesis of Phospholipomannan of <i>Candida albicans</i> . Journal of Organic Chemistry, 2020, 85, 7757-7771.	3.2	8
33	Synthesis and biological evaluation of substituted N-alkylphenyl-3,5-dinitrobenzamide analogs as anti-TB agents. MedChemComm, 2014, 5, 521.	3.4	7
34	C–H Arylation of <i>N</i> â€Heteroarenes under Metalâ€Free Conditions and its Application towards the Synthesis of Pentabromo―and Pentachloropseudilins. European Journal of Organic Chemistry, 2019, 2019, 3591-3598.	2.4	6
35	A concise and sequential synthesis of the nitroimidazooxazole based drug, Delamanid and related compounds. RSC Advances, 2020, 10, 17085-17093.	3.6	5
36	High-throughput screening of compounds library to identify novel inhibitors against latent Mycobacterium tuberculosis using streptomycin-dependent Mycobacterium tuberculosis 18b strain as a model. Tuberculosis, 2020, 124, 101958.	1.9	4

#	Article	IF	CITATIONS
37	TCT-mediated click chemistry for the synthesis of nitrogen-containing functionalities: conversion of carboxylic acids to carbamides, carbamates, carbamothioates, amides and amines. Organic and Biomolecular Chemistry, 2022, 20, 4942-4948.	2.8	4
38	Synthesis of novel lipidated iridoid glycosides as vaccine adjuvants: 6-O-Palmitoyl Agnuside elicit strong Th1 and Th2 response to ovalbumin in mice. International Immunopharmacology, 2013, 17, 593-600.	3.8	3
39	Development and validation of a highly sensitive LC–MS/MS-ESI method for quantification of IIIM-019—A novel nitroimidazole derivative with promising action against Tuberculosis: Application to drug development. Journal of Pharmaceutical and Biomedical Analysis, 2016, 124, 26-33.	2.8	3