Kenneth McEnaney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1832315/publications.pdf

Version: 2024-02-01

687363 996975 2,687 17 13 15 citations h-index g-index papers 17 17 17 3450 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nature Materials, $2011, 10, 532-538$.	27.5	987
2	A review of cermet-based spectrally selective solar absorbers. Energy and Environmental Science, 2014, 7, 1615.	30.8	386
3	Concentrating solar thermoelectric generators with a peak efficiency of 7.4%. Nature Energy, 2016, 1, .	39.5	269
4	High thermoelectric performance of MgAgSb-based materials. Nano Energy, 2014, 7, 97-103.	16.0	264
5	Studies on the Bi ₂ 3€"Bi ₃ 3€"Bi ₃ 3€"Bi ₃ 3€"Bi ₂ 552-560.	30.8	250
6	Modeling and optimization of solar thermoelectric generators for terrestrial applications. Solar Energy, 2012, 86, 1338-1350.	6.1	129
7	Enhancement of Thermoelectric Performance of nâ€Type PbSe by Cr Doping with Optimized Carrier Concentration. Advanced Energy Materials, 2015, 5, 1401977.	19.5	92
8	Modeling of concentrating solar thermoelectric generators. Journal of Applied Physics, 2011, 110, .	2.5	73
9	A Hybrid Electric and Thermal Solar Receiver. Joule, 2018, 2, 962-975.	24.0	70
10	Aerogel-based solar thermal receivers. Nano Energy, 2017, 40, 180-186.	16.0	67
11	Enhancement of thermoelectric performance in n-type PbTe1â^'Se by doping Cr and tuning Te:Se ratio. Nano Energy, 2015, 13, 355-367.	16.0	36
12	Optical cavity for improved performance of solar receivers in solar-thermal systems. Solar Energy, 2014, 108, 69-79.	6.1	34
13	Accurate determination of the total hemispherical emittance and solar absorptance of opaque surfaces at elevated temperatures. Solar Energy Materials and Solar Cells, 2015, 132, 640-649.	6.2	19
14	DIRECT HEAT-TO-ELECTRICITY CONVERSION OF SOLAR ENERGY. Annual Review of Heat Transfer, 2012, 15, 179-230.	1.0	7
15	The Promise of Nanocomposite Thermoelectric Materials. Materials Research Society Symposia Proceedings, 2009, 1166, 1.	0.1	2
16	Thermoelectric energy conversion using nanostructured materials., 2011,,.		2
17	Exceeding Solar Cell Efficiency Limit by Thermal Upconversion of Low-Energy Photons., 2013,,.		0