Maria Elisa da Costa Rodrigues

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1832268/publications.pdf

Version: 2024-02-01

		471509	395702
33	1,330	17	33
papers	citations	h-index	g-index
33	33	33	2240
all docs	docs citations	times ranked	citing authors

MARIA ELISA DA COSTA

#	Article	IF	CITATIONS
1	Antisense locked nucleic acid gapmers to control Candida albicans filamentation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 39, 102469.	3.3	1
2	Comparing the effect of Thymus spp. essential oils on Candida auris. Industrial Crops and Products, 2022, 178, 114667.	5.2	7
3	Portuguese honeys as antimicrobial agents against Candida species. Journal of Traditional and Complementary Medicine, 2021, 11, 130-136.	2.7	20
4	Candida albicans Antimicrobial and Antibiofilm Activity of Novel Endodontic Solvents. Applied Sciences (Switzerland), 2021, 11, 7748.	2.5	1
5	Candida spp./Bacteria Mixed Biofilms. Journal of Fungi (Basel, Switzerland), 2020, 6, 5.	3.5	78
6	Satureja montana L. and Origanum majorana L. Decoctions: Antimicrobial Activity, Mode of Action and Phenolic Characterization. Antibiotics, 2020, 9, 294.	3.7	24
7	Honey as a Strategy to Fight Candida tropicalis in Mixed-Biofilms with Pseudomonas aeruginosa. Antibiotics, 2020, 9, 43.	3.7	16
8	Application of 2′-OMethylRNA′ Antisense Oligomer to Control Candida albicans EFG1 Virulence Determinant. Molecular Therapy - Nucleic Acids, 2019, 18, 508-517.	5.1	11
9	Phenolic Plant Extracts Versus Penicillin G: In Vitro Susceptibility of Staphylococcus aureus Isolated from Bovine Mastitis. Pharmaceuticals, 2019, 12, 128.	3.8	7
10	Candida sp. Infections in Patients with Diabetes Mellitus. Journal of Clinical Medicine, 2019, 8, 76.	2.4	166
11	Lactobacillus crispatus represses vaginolysin expression by BV associated Gardnerella vaginalis and reduces cell cytotoxicity. Anaerobe, 2018, 50, 60-63.	2.1	27
12	Plant phenolic extracts as an effective strategy to control Staphylococcus aureus , the dairy industry pathogen. Industrial Crops and Products, 2018, 112, 515-520.	5.2	38
13	Susceptibility of <i>Candida glabrata</i> biofilms to echinocandins: alterations in the matrix composition. Biofouling, 2018, 34, 569-578.	2.2	23
14	The Effectiveness of Voriconazole in Therapy of Candida glabrata's Biofilms Oral Infections and Its Influence on the Matrix Composition and Gene Expression. Mycopathologia, 2017, 182, 653-664.	3.1	24
15	TiO ₂ nanotubes enriched with calcium, phosphorous and zinc: promising bio-selective functional surfaces for osseointegrated titanium implants. RSC Advances, 2017, 7, 49720-49738.	3.6	16
16	Candida Species Biofilms' Antifungal Resistance. Journal of Fungi (Basel, Switzerland), 2017, 3, 8.	3.5	184
17	Candida glabrata Biofilms: How Far Have We Come?. Journal of Fungi (Basel, Switzerland), 2017, 3, 11.	3.5	80
18	Polymicrobial Ventilator-Associated Pneumonia: Fighting In Vitro Candida albicans-Pseudomonas aeruginosa Biofilms with Antifungal-Antibacterial Combination Therapy. PLoS ONE, 2017, 12, e0170433.	2.5	36

Maria Elisa da Costa

#	Article	IF	CITATIONS
19	Novel strategies to fight <i>Candida</i> species infection. Critical Reviews in Microbiology, 2016, 42, 594-606.	6.1	60
20	Disinfectants to Fight Oral Candida Biofilms. Advances in Experimental Medicine and Biology, 2016, 931, 83-93.	1.6	5
21	Glycosylation: impact, control and improvement during therapeutic protein production. Critical Reviews in Biotechnology, 2014, 34, 281-299.	9.0	125
22	Feed Optimization in Fed-Batch Culture. Methods in Molecular Biology, 2014, 1104, 105-116.	0.9	6
23	Evaluation of Solid and Porous Microcarriers for Cell Growth and Production of Recombinant Proteins. Methods in Molecular Biology, 2014, 1104, 137-147.	0.9	7
24	The impact of microcarrier culture optimization on the glycosylation profile of a monoclonal antibody. SpringerPlus, 2013, 2, 25.	1.2	14
25	Advances and Drawbacks of the Adaptation to Serum-Free Culture of CHO-K1 Cells for Monoclonal Antibody Production. Applied Biochemistry and Biotechnology, 2013, 169, 1279-1291.	2.9	27
26	The impact of cell adaptation to serum-free conditions on the glycosylation profile of a monoclonal antibody produced by Chinese hamster ovary cells. New Biotechnology, 2013, 30, 563-572.	4.4	19
27	Evaluation of Macroporous and Microporous Carriers for CHO-K1 Cell Growth and Monoclonal Antibody Production. Journal of Microbiology and Biotechnology, 2013, 23, 1308-1321.	2.1	14
28	Comparison of commercial serum-free media for CHO-K1 cell growth and monoclonal antibody production. International Journal of Pharmaceutics, 2012, 437, 303-305.	5.2	24
29	Evaluation of the OSCARâ,,¢ system for the production of monoclonal antibodies by CHO-K1 cells. International Journal of Pharmaceutics, 2012, 430, 42-46.	5.2	11
30	Wave characterization for mammalian cell culture: residence time distribution. New Biotechnology, 2012, 29, 402-408.	4.4	11
31	Technological progresses in monoclonal antibody production systems. Biotechnology Progress, 2010, 26, 332-351.	2.6	77
32	Guidelines to cell engineering for monoclonal antibody production. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 74, 127-138.	4.3	166
33	MIC Evaluation ofCandidaReference Strains and Clinical Isolates by E-Test. Journal of Chemotherapy, 2009, 21, 351-355.	1.5	5