Peng Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1831921/publications.pdf

Version: 2024-02-01

394286 526166 1,274 32 19 27 h-index citations g-index papers 32 32 32 1254 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	All-Starch-Based Hydrogel for Flexible Electronics: Strain-Sensitive Batteries and Self-Powered Sensors. ACS Sustainable Chemistry and Engineering, 2022, 10, 6724-6735.	3.2	34
2	Facile preparation of hydrogel glue with high strength and antibacterial activity from physically linked network. International Journal of Pharmaceutics, 2022, 622, 121843.	2.6	1
3	Comparison of the structure and properties of hydroxypropylated acid-hydrolysed maize starches with different amylose/amylopectin contents. Food Hydrocolloids, 2021, 110, 106134.	5.6	23
4	Double-network hydrogels with superior self-healing properties using starch reinforcing strategy. Carbohydrate Polymers, 2021, 257, 117626.	5.1	23
5	Facile Preparation of Eco-Friendly, Flexible Starch-Based Materials with Ionic Conductivity and Strain-Responsiveness. ACS Sustainable Chemistry and Engineering, 2020, 8, 19117-19128.	3.2	27
6	Structural Disorganization and Chain Aggregation of High-Amylose Starch in Different Chloride Salt Solutions. ACS Sustainable Chemistry and Engineering, 2020, 8, 4838-4847.	3.2	26
7	Gluten-starch interactions in wheat gluten during carboxylic acid deamidation upon hydrothermal treatment. Food Chemistry, 2019, 283, 111-122.	4.2	25
8	Cellulose-starch Hybrid Films Plasticized by Aqueous ZnCl2 Solution. International Journal of Molecular Sciences, 2019, 20, 474.	1.8	14
9	Structure, thermal stability and suspension rheological properties of alcohol–alkali-treated waxy rice starch. International Journal of Biological Macromolecules, 2019, 134, 397-404.	3.6	32
10	Starch–zinc complex and its reinforcement effect on starch-based materials. Carbohydrate Polymers, 2019, 206, 528-538.	5.1	29
11	Investigation of rheological properties and conformation of cassava starch in zinc chloride solution. Starch/Staerke, 2017, 69, 1600384.	1.1	10
12	Water stress affects on cell membrane lipid oxidation and calcification of chestnut (Castanea) Tj ETQq0 0 0 rgBT	19yerlock	₹ 10 Tf 50 302
13	Shear degradation of corn starches with different amylose contents. Food Hydrocolloids, 2017, 66, 199-205.	5.6	50
14	Understanding the structural features of high-amylose maize starch through hydrothermal treatment. International Journal of Biological Macromolecules, 2016, 84, 268-274.	3.6	44
15	Zinc chloride aqueous solution as a solvent for starch. Carbohydrate Polymers, 2016, 136, 266-273.	5.1	37
16	Physical properties and prebiotic activity of maize starchâ€based functional films. Starch/Staerke, 2015, 67, 124-131.	1.1	20
17	Processing of Plasticized Starch-Based Materials. , 2014, , 257-289.		15
18	The properties of antimicrobial films derived from poly(lactic acid)/starch/chitosan blended matrix. Carbohydrate Polymers, 2013, 98, 959-966.	5.1	69

#	Article	IF	Citations
19	Scanning probe acoustic microscopy of extruded starch materials: Direct visual evidence of starch crystal. Carbohydrate Polymers, 2013, 98, 372-379.	5.1	6
20	The Extrapolation Method for Hyper Differential Scanning Calorimetry. Advanced Materials Research, 2012, 554-556, 1994-1998.	0.3	0
21	Effect of resistant starch film properties on the colon-targeting release of drug from coated pellets. Journal of Controlled Release, 2011, 152, e5-e7.	4.8	8
22	Rheological properties of thermoplastic starch studied by multipass rheometer. Carbohydrate Polymers, 2011, 83, 914-919.	5.1	46
23	Phase transitions of maize starches with different amylose contents in glycerol–water systems. Carbohydrate Polymers, 2011, 85, 180-187.	5.1	74
24	Extrusion processing and characterization of edible starch films with different amylose contents. Journal of Food Engineering, 2011, 106, 95-101.	2.7	182
25	Glass transition temperature of starches with different amylose/amylopectin ratios. Journal of Cereal Science, 2010, 51, 388-391.	1.8	86
26	Starch thermal transitions comparatively studied by DSC and MTDSC. Starch/Staerke, 2010, 62, 350-357.	1.1	20
27	Rheological properties of starches with different amylose/amylopectin ratios. Journal of Cereal Science, 2009, 49, 371-377.	1.8	211
28	Glass transition temperature of starch studied by a high-speed DSC. Carbohydrate Polymers, 2009, 77, 250-253.	5.1	136
29	Application of Atomic Force Microscopy on Studying Micro- and Nano-Structures of Starch. International Journal of Food Engineering, 2008, 4, .	0.7	10
30	The Thermal and Rheological Properties of Starch Plasticized in Glycerol-Water Mixture. Advanced Materials Research, 0, 343-344, 38-42.	0.3	2
31	Study on the Properties of Poly(lactic Acid) and Thermal Plastic Starch Blended Materials Plasticized by PEG 200. Advanced Materials Research, 0, 550-553, 813-817.	0.3	1
32	Differences of Nano-Structure between Waxy and Normal Starch. Advanced Materials Research, 0, 528, 241-244.	0.3	1