
Laurent A Messonnier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1831907/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lactate kinetics at the lactate threshold in trained and untrained men. Journal of Applied Physiology, 2013, 114, 1593-1602.	2.5	116
2	Importance of pH regulation and lactate/H+ transport capacity for work production during supramaximal exercise in humans. Journal of Applied Physiology, 2007, 102, 1936-1944.	2.5	110
3	Direct and indirect lactate oxidation in trained and untrained men. Journal of Applied Physiology, 2013, 115, 829-838.	2.5	49
4	Blood lactate exchange and removal abilities after relative high-intensity exercise: effects of training in normoxia and hypoxia. European Journal of Applied Physiology, 2001, 84, 403-412.	2.5	44
5	Lactate exchange and removal abilities in rowing performance. Medicine and Science in Sports and Exercise, 1997, 29, 396-401.	0.4	44
6	Evidence for a Profound Remodeling of Skeletal Muscle and Its Microvasculature in Sickle Cell Anemia. American Journal of Pathology, 2015, 185, 1448-1456.	3.8	37
7	Remodeling of skeletal muscle microvasculature in sickle cell trait and α-thalassemia. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H375-H384.	3.2	35
8	Moderate-intensity endurance-exercise training in patients with sickle-cell disease without severe chronic complications (EXDRE): an open-label randomised controlled trial. Lancet Haematology,the, 2018, 5, e554-e562.	4.6	26
9	Role of MCT1 and CAII in skeletal muscle pH homeostasis, energetics, and function: <i>in vivo</i> insights from MCT1 haploinsufficient mice. FASEB Journal, 2017, 31, 2562-2575.	0.5	21
10	How Sickle Cell Disease Impairs Skeletal Muscle Function: Implications in Daily Life. Medicine and Science in Sports and Exercise, 2019, 51, 4-11.	0.4	20
11	Beneficial effects of endurance exercise training on skeletal muscle microvasculature in sickle cell disease patients. Blood, 2019, 134, 2233-2241.	1.4	19
12	Skeletal muscle structural and energetic characteristics in subjects with sickle cell trait, α-thalassemia, or dual hemoglobinopathy. Journal of Applied Physiology, 2010, 109, 728-734.	2.5	16
13	Moderate and intense muscular exercises induce marked intramyocellular metabolic acidosis in sickle cell disease mice. Journal of Applied Physiology, 2017, 122, 1362-1369.	2.5	15
14	Endurance training reduces exercise-induced acidosis and improves muscle function in a mouse model of sickle cell disease. Molecular Genetics and Metabolism, 2018, 123, 400-410.	1.1	15
15	Impaired muscle force production and higher fatigability in a mouse model of sickle cell disease. Blood Cells, Molecules, and Diseases, 2017, 63, 37-44.	1.4	14
16	Do we have to consider acidosis induced by exercise as deleterious in sickle cell disease?. Experimental Physiology, 2018, 103, 1213-1220.	2.0	11
17	Muscle MCT4 Content Is Correlated with the Lactate Removal Ability during Recovery Following All-Out Supramaximal Exercise in Highly-Trained Rowers. Frontiers in Physiology, 2016, 7, 223.	2.8	10
18	Physiological Evaluation for Endurance Exercise Prescription in Sickle Cell Disease. Medicine and Science in Sports and Exercise, 2019, 51, 1795-1801.	0.4	10

LAURENT A MESSONNIER

#	Article	IF	CITATIONS
19	Lactate recovery kinetics in response to high-intensity exercises. European Journal of Applied Physiology, 2016, 116, 1455-1465.	2.5	9
20	Muscle structural, energetic and functional benefits of endurance exercise training in sickle cell disease. American Journal of Hematology, 2020, 95, 1257-1268.	4.1	9
21	Modelling of Blood Lactate Time-Courses During Exercise and/or the Subsequent Recovery: Limitations and Few Perspectives. Frontiers in Physiology, 2021, 12, 702252.	2.8	5
22	Preventive measures for the critical postexercise period in sickle cell trait and disease. Journal of Applied Physiology, 2021, 130, 485-490.	2.5	3
23	Lower Muscle and Blood Lactate Accumulation in Sickle Cell Trait Carriers in Response to Short High-Intensity Exercise. Nutrients, 2022, 14, 501.	4.1	2
24	In vivo muscle function and energetics in women with sickle cell anemia or trait: a 31P-magnetic resonance spectroscopy study. Journal of Applied Physiology, 2021, 130, 737-745.	2.5	1
25	Mitochondrial function in sickle cell disease. Blood, 2022, 139, 1616-1617.	1.4	1
26	Gluconeogenesis and hepatic glycogenolysis during exercise at the lactate threshold. FASEB Journal, 2013, 27, 1132.2.	0.5	0
27	Skeletal Muscle Satellite Cells in Sickle Cell Disease Patients and Their Responses to a Moderate-intensity Endurance Exercise Training Program. Journal of Histochemistry and Cytochemistry, 2022, 70, 415-426.	2.5	0