Krishanu Biswas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/183067/publications.pdf

Version: 2024-02-01

128 3,529 34 51
papers citations h-index g-index

131 131 131 3282 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Five decades of research on the development of eutectic as engineering materials. Progress in Materials Science, 2022, 123, 100793.	16.0	58
2	Low-cost high entropy alloy (HEA) for high-efficiency oxygen evolution reaction (OER). Nano Research, 2022, 15, 4799-4806.	5 . 8	80
3	Ex Situ Fabrication of Multiwalled Carbon Nanotube-Reinforced Aluminum Nanocomposite via Conventional Sintering and SPS Techniques. Arabian Journal for Science and Engineering, 2022, 47, 8643-8662.	1.7	1
4	Processing and properties of yttria and lanthana dispersed ODS duplex stainless steels. Materials Science & Science & Properties, Microstructure and Processing, 2022, 837, 142746.	2.6	7
5	Highly Sensitive and Selective Triethylamine Sensing through High-Entropy Alloy (Ti–Zr–Cr–V–Ni) Nanoparticle-Induced Fermi Energy Control of MoS ₂ Nanosheets. ACS Applied Materials & Interfaces, 2022, 14, 13653-13664.	4.0	13
6	Development of Oxide Dispersed Austenitic Stainless Steel through Mechanical Alloying and Spark Plasma Sintering. Journal of Materials Engineering and Performance, 2022, 31, 9522-9533.	1.2	1
7	Novel Alloy Design Concepts Enabling Enhanced Mechanical Properties of High Entropy Alloys. Frontiers in Materials, 2022, 9, .	1.2	14
8	Cryomilling as environmentally friendly synthesis route to prepare nanomaterials. International Materials Reviews, 2021, 66, 493-532.	9.4	31
9	Initial texture dependence of nanocrystalline omega phase formation during high pressure torsion of commercially pure titanium. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2021, 802, 140687.	2.6	8
10	Effect of Ga substitution on structural and magnetic properties of Fe50Mn25Al25-xGax Heusler alloys. Journal of Alloys and Compounds, 2021, 854, 156756.	2.8	3
11	Easy scalable avenue of anti-bacterial nanocomposites coating containing Ag NPs prepared by cryomilling. Materials Today Communications, 2021, 26, 102020.	0.9	0
12	Experimental approach to probe into mechanisms of highâ€temperature erosion of NbB ₂ â€ZrO ₂ . Journal of the American Ceramic Society, 2021, 104, 3518-3530.	1.9	3
13	The role of Ti addition on the evolution and stability of $\hat{I}^3/\hat{I}^3\hat{a}\in^2$ microstructure in a Co-30Ni-10Al-5Mo-2Ta alloy. Acta Materialia, 2021, 208, 116736.	3.8	25
14	Solidification behavior of nanoscaled tri-phasic bismuth-indium-tin alloy particles embedded in Al–Cu–Fe quasicrystalline matrix. Journal of Alloys and Compounds, 2021, 867, 159011.	2.8	5
15	TiVCrNiZrFex High entropy alloy: Phase evolution, magnetic and mechanical properties. Journal of Alloys and Compounds, 2021, 871, 159572.	2.8	19
16	Development and mechanical properties investigation of Cu-MWCNT-graphite nanoplatelets hybrid nanocomposites. Diamond and Related Materials, 2021, 117, 108467.	1.8	10
17	Dual-Site Cooperation for High Benzyl Alcohol Oxidation Activity of MnO ₂ in Biphasic MnO _{<i>x</i>} –CeO ₂ Catalyst Using Aerial O ₂ in the Vapor Phase. Journal of Physical Chemistry C, 2021, 125, 20831-20844.	1.5	12
18	Conducting Graphene Synthesis from Electronic Waste. ACS Sustainable Chemistry and Engineering, 2021, 9, 14090-14100.	3.2	8

#	Article	IF	Citations
19	Designing hexagonal close packed high entropy alloys using machine learning. Modelling and Simulation in Materials Science and Engineering, 2021, 29, 085005.	0.8	7
20	Achieving high strength and ductility in equimolar FeMnNi medium entropy alloy by tuning microstructural entropy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 826, 141965.	2.6	5
21	A perspective on the catalysis using the high entropy alloys. Nano Energy, 2021, 88, 106261.	8.2	87
22	Microstructural and mechanical characterization of tungsten containing lanthana based ferritic ODS steel. Materials Science & Structural Materials: Properties, Microstructure and Processing, 2021, 828, 142077.	2.6	5
23	A phase-field study on a eutectic high-entropy alloy during solidification. Philosophical Magazine Letters, 2021, 101, 160-172.	0.5	3
24	Electrooxidation of Hydrazine Utilizing High-Entropy Alloys: Assisting the Oxygen Evolution Reaction at the Thermodynamic Voltage. ACS Catalysis, 2021, 11, 14000-14007.	5 . 5	47
25	Nanofabrication route to achieve sustainable production of next generation defect-free graphene: analysis and characterisation. Nanofabrication, 2021, 6, 36-43.	1.1	4
26	Effect of graphite nanoplatelets on spark plasma sintered and conventionally sintered aluminum-based nanocomposites developed by powder metallurgy. Materials Science-Poland, 2021, 39, 346-370.	0.4	1
27	Enhanced Thermoelectric Properties of In-Filled Co ₄ Sb ₁₂ with InSb Nanoinclusions. ACS Applied Energy Materials, 2020, 3, 635-646.	2.5	29
28	Micro-mechanisms of microstructural damage due to low cycle fatigue in CoCuFeMnNi high entropy alloy. International Journal of Fatigue, 2020, 130, 105258.	2.8	43
29	A new perspective to thermodynamical designing of high entropy bulk metallic glasses (HE-BMGs). Physica B: Condensed Matter, 2020, 595, 412350.	1.3	16
30	Green Route for Beneficiation of Metallic Materials from Electronic Waste for Selective Reduction of CO ₂ . ACS Sustainable Chemistry and Engineering, 2020, 8, 12142-12150.	3.2	12
31	Solution combustion synthesis, characterization, magnetic, and dielectric properties of CoFe ₂ O ₄ and Co _{0.5} M _{0.5} Fe ₂ O ₄ (M = Mn, Ni, and Zn). Physical Chemistry Chemical Physics. 2020. 22. 20087-20106.	1.3	30
32	Multi-component (Ag–Au–Cu–Pd–Pt) alloy nanoparticle-decorated p-type 2D-molybdenum disulfide (MoS ₂) for enhanced hydrogen sensing. Nanoscale, 2020, 12, 11830-11841.	2.8	42
33	Low-Temperature Propylene Epoxidation Activity of CuO–CeO ₂ Catalyst with CO + O ₂ : Role of Metal–Support Interaction on the Reducibility and Catalytic Property of CuO _{<i>x</i>} Species. Journal of Physical Chemistry C, 2020, 124, 14131-14146.	1.5	20
34	A critical evaluation of microstructure-texture-mechanical behavior heterogeneity in high pressure torsion processed CoCuFeMnNi high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 782, 139187.	2.6	22
35	Formic acid and methanol electro-oxidation and counter hydrogen production using nano high entropy catalyst. Materials Today Energy, 2020, 16, 100393.	2.5	38
36	High-Entropy Alloys as Catalysts for the CO ₂ and CO Reduction Reactions: Experimental Realization. ACS Catalysis, 2020, 10, 3658-3663.	5.5	244

#	Article	IF	CITATIONS
37	High strain rate compression behaviour of single phase CoCuFeMnNi high entropy alloy. Journal of Alloys and Compounds, 2020, 823, 153763.	2.8	42
38	Formation and stability of C14 type Laves phase in multi component high-entropy alloys. Journal of Alloys and Compounds, 2020, 832, 153764.	2.8	45
39	Effect of addition of multiwalled carbon nanotube/graphite nanoplatelets hybrid on the mechanical properties of aluminium. Diamond and Related Materials, 2020, 104, 107715.	1.8	20
40	Melting behaviour of tri-phasic Bi44ln32Sn23 alloy nanoparticle embedded in icosahedral quasicrystalline matrix. Journal of Alloys and Compounds, 2020, 834, 155160.	2.8	9
41	High-Entropy Materials:Critical Review and Way Forward. Current Science, 2020, 118, 1520.	0.4	14
42	Precision in Compositional Determination of Multiphase Nanoscale Structures Using the Aberration-corrected Advance Electron Microscope: Challenges and Opportunities. Microscopy and Microanalysis, 2020, 26, 988-989.	0.2	1
43	Dry reforming activity due to ionic Ru in La _{1.99} Ru _{0.01} O ₃ : the role of specific carbonates. Physical Chemistry Chemical Physics, 2019, 21, 16726-16736.	1.3	8
44	ICME approach to explore equiatomic and non-equiatomic single phase BCC refractory high entropy alloys. Journal of Alloys and Compounds, 2019, 806, 587-595.	2.8	46
45	Ultra-Low-Temperature CO Oxidation Activity of Octahedral Site Cobalt Species in Co ₃ O ₄ Based Catalysts: Unravelling the Origin of the Unique Catalytic Property. Journal of Physical Chemistry C, 2019, 123, 19557-19571.	1.5	41
46	Computational and Microstructural Stability Analysis of Shock Wave Interaction with NbB ₂ -B ₄ C-Based Nanostructured Ceramics. ACS Applied Materials & Interfaces, 2019, 11, 47491-47500.	4.0	19
47	Stabilization of a Highly Concentrated Colloidal Suspension of Pristine Metallic Nanoparticles. Langmuir, 2019, 35, 2668-2673.	1.6	20
48	Establishing processing-microstructure-property paradigm in complex concentrated equiatomic CoCuFeMnNi alloy. Materials Science & Diperties, Microstructure and Processing, 2019, 759, 415-429.	2.6	22
49	Spark Plasma Sintering of Ultrahigh Temperature Ceramics. , 2019, , 369-440.		9
50	A comparative study on the evolution of microstructure and hardness during monotonic and cyclic high pressure torsion of CoCuFeMnNi high entropy alloy. Journal of Materials Research, 2019, 34, 732-743.	1.2	18
51	Alumina–MWCNT composites: microstructural characterization and mechanical properties. Journal of Asian Ceramic Societies, 2019, 7, 1-19.	1.0	21
52	Effect of TiB2 addition on wear behavior of (AlCrFeMnV)90Bi10 high entropy alloy composite. Tribology International, 2019, 132, 62-74.	3.0	41
53	Cryomilling: An environment friendly approach of preparation large quantity ultra refined pure aluminium nanoparticles. Journal of Materials Research and Technology, 2019, 8, 63-74.	2.6	69
54	Critical role of ZrO2 on densification and microstructure development in spark plasma sintered NbB2. Acta Materialia, 2018, 152, 215-228.	3.8	15

#	Article	IF	Citations
55	Morphology controlled graphene–alloy nanoparticle hybrids with tunable carbon monoxide conversion to carbon dioxide. Nanoscale, 2018, 10, 8840-8850.	2.8	5
56	Spectral Studies of Leadâ€Free Organicâ€Inorganic Hybrid Solidâ€State Perovskites CH ₃ NH ₃ Bi _{2/3} I ₃ and CH ₃ NH ₃ Potential Photo Absorbers. ChemistrySelect, 2018, 3, 794-800.	0.7	5
57	Wear behavior of high entropy alloys containing soft dispersoids (Pb, Bi). Materials Chemistry and Physics, 2018, 210, 222-232.	2.0	48
58	Phase equilibria in equiatomic CoCuFeMnNi high entropy alloy. Materials Chemistry and Physics, 2018, 210, 269-278.	2.0	54
59	Phase Evolution and Mechanical Properties of Suction Cast Ti–Fe–Co Ternary Alloys. Transactions of the Indian Institute of Metals, 2018, 71, 201-207.	0.7	4
60	Dynamic precipitation at elevated temperatures in a dual-phase AlCoCrFeNi high-entropy alloy: an <i>in situ</i> study. Philosophical Magazine Letters, 2018, 98, 400-409.	0.5	9
61	Effect of Al Addition on the Microstructural Evolution of Equiatomic CoCrFeMnNi Alloy. Transactions of the Indian Institute of Metals, 2018, 71, 2749-2758.	0.7	21
62	Preparation of nanocrystalline high-entropy alloys via cryomilling of cast ingots. Journal of Materials Science, 2018, 53, 13411-13423.	1.7	55
63	Densification and microstructural evolution of spark plasma sintered NiTi shape memory alloy. Advanced Powder Technology, 2018, 29, 2456-2462.	2.0	24
64	Silica-graphene nanoplatelets and silica-MWCNT composites: Microstructure and mechanical properties. Diamond and Related Materials, 2018, 87, 186-201.	1.8	10
65	High-entropy alloys and metallic nanocomposites: Processing challenges, microstructure development and property enhancement. Materials Science and Engineering Reports, 2018, 131, 1-42.	14.8	126
66	Ferromagnetism in α-Mn nanorods. Journal of Applied Physics, 2017, 121, 084304.	1.1	2
67	Ageing behaviour of equiatomic consolidated Al 20 Co 20 Cu 20 Ni 20 Zn 20 high entropy alloy. Materials Characterization, 2017, 129, 127-134.	1.9	16
68	In the quest of single phase multi-component multiprincipal high entropy alloys. Journal of Alloys and Compounds, 2017, 697, 434-442.	2.8	83
69	Low-Temperature CO Oxidation over Combustion Made Fe- and Cr-Doped Co ₃ O ₄ Catalysts: Role of Dopant's Nature toward Achieving Superior Catalytic Activity and Stability. Journal of Physical Chemistry C, 2017, 121, 15256-15265.	1.5	67
70	Effect of graphite nanoplatelets on the mechanical properties of alumina-based composites. Ceramics International, 2017, 43, 11376-11389.	2.3	21
71	In-situ study of crack initiation and propagation in a dual phase AlCoCrFeNi high entropy alloy. Journal of Alloys and Compounds, 2017, 710, 539-546.	2.8	66
72	Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: Microstructure and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 679, 299-313.	2.6	142

#	Article	IF	CITATIONS
73	Effect of Aluminium and Molybdenum on the microstructural evolution and mechanical properties of hypoeutectic Nb-Si-Cr Alloys. Materials Today: Proceedings, 2016, 3, 2981-2990.	0.9	6
74	Green synthesis of Ag nanoparticles in large quantity by cryomilling. RSC Advances, 2016, 6, 111380-111388.	1.7	40
75	Solidification Behavior in Newly Designed Ni-Rich Ni-Ti-Based Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 6214-6223.	1.1	10
76	Hollow Gold Nanoprism as Highly Efficient "Single―Nanotransducer for Surface-Enhanced Raman Scattering Applications. Journal of Physical Chemistry C, 2016, 120, 25548-25556.	1.5	16
77	Graphene–Metal Nanoparticle Hybrids: Electronic Interaction Between Graphene and Nanoparticles. Transactions of the Indian Institute of Metals, 2016, 69, 839-844.	0.7	20
78	Deciphering micro-mechanisms of plastic deformation in a novel single phase fcc-based MnFeCoNiCu high entropy alloy using crystallographic texture. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 657, 224-233.	2.6	96
79	Preparation of Pb-In Alloy Nanoparticles via Solvothermal Route: Optimization and Microstructural Investigation. Materials and Manufacturing Processes, 2016, 31, 126-133.	2.7	1
80	Melting and Solidification Behaviour of Bi–Pb Multiphase Alloy Nanoparticles Embedded in Aluminum Matrix. Journal of Nanoscience and Nanotechnology, 2015, 15, 309-316.	0.9	13
81	Fabrication of novel cryomill for synthesis of high purity metallic nanoparticles. Review of Scientific Instruments, 2015, 86, 083903.	0.6	32
82	Melting Behaviour of Bi1-xSbx Free Standing Alloy Nanoparticles Synthesized via Solvothermal Route. Materials Research, 2015, 18, 55-60.	0.6	20
83	Microstructural Evolution in Novel Suction Cast Multicomponent Ti-Fe-Co Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 851-868.	1.1	10
84	Melting Behavior of Al/Pb/Sn/Al Multilayered Thin Films. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 3932-3942.	1.1	2
85	Graphene: a self-reducing template for synthesis of graphene–nanoparticles hybrids. RSC Advances, 2015, 5, 62284-62289.	1.7	24
86	Formation and Stability of Pb-Sn Embedded Multiphase Alloy Nanoparticles via Mechanical Alloying. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 3365-3377.	1.1	12
87	One-step synthesis of Pb–Sb nanostructured alloy particles: Effect of processing parameters. Materials Chemistry and Physics, 2015, 166, 207-214.	2.0	4
88	Effect of Chromium on Microstructure and Mechanical Properties of Nb–Si Hypoeutectic and Eutectic Alloys. Transactions of the Indian Institute of Metals, 2015, 68, 1039-1046.	0.7	3
89	Hydroxyapatiteâ€titanium bulk composites for bone tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2015, 103, 791-806.	2.1	58
90	Microstructure Evolution and Mechanical Properties of Suction Cast $Ti < sub > 60 < sub > Fe < sub > 40-x < sub > Co < sub > x < sub > (x = 0, 16, 18, 20, 22, 24)$ Alloys. Materials Science Forum, 2014, 790-791, 497-502.	0.3	5

#	Article	IF	CITATIONS
91	Microstructure–Wear Resistance Correlation and Wear Mechanisms of Spark Plasma Sintered Cu-Pb Nanocomposites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 482-500.	1.1	6
92	The effect of matrix on melting and solidification behaviours of embedded Pb-Sn alloy nanoparticles. Philosophical Magazine, 2014, 94, 2031-2045.	0.7	7
93	Sinter ageing of equiatomic Al20Co20Cu20Zn20Ni20 high entropy alloy via mechanical alloying. Materials Science & Dipineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 617, 211-218.	2.6	55
94	Microstructure-hardness-fretting wear resistance correlation in ultrafine grained Cu–TiB 2 –Pb composites. Wear, 2014, 319, 160-171.	1.5	14
95	Preparation of Freestanding Zn Nanocrystallites by Combined Milling at Cryogenic and Room Temperatures. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 1917-1924.	1.1	18
96	Electron Microscopic Study on the Suction Cast In Situ Ti-Fe-Sn Ultrafine Composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 427-439.	1.1	13
97	Fretting wear study of Cu–10wt% TiB2 and Cu–10wt% TiB2–10wt% Pb composites. Wear, 2013, 306, 138-148.	1.5	18
98	Fine scale characterization of surface/subsurface and nanosized debris particles on worn Cu–10Â% Pb nanocomposites. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	9
99	Melting and solidification behavior of Pb–Sn embedded alloy nano-particles. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	17
100	Flow cytometry analysis of human fetal osteoblast fate processes on spark plasma sintered hydroxyapatite–titanium biocomposites. Journal of Biomedical Materials Research - Part A, 2013, 101, 2925-2938.	2.1	31
101	Novel high-strength NiCuCoTiTa alloy with plasticity. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	14
102	On the toughness enhancement in hydroxyapatite-based composites. Acta Materialia, 2013, 61, 5198-5215.	3.8	82
103	Processing and Consolidation of Nanocrystalline Cu-Zn-Ti-Fe-Cr High-Entropy Alloys via Mechanical Alloying. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 4532-4541.	1.1	53
104	Effect of thiourea on grain refinement and defect structure of the pulsed electrodeposited nanocrystalline copper. Surface and Coatings Technology, 2013, 214, 8-18.	2,2	39
105	Densification kinetics, phase assemblage and hardness of spark plasma sintered Cu–10 wt% TiB ₂ and Cu–10 wt% TiB ₂ –10 wt% Pb composites. Journal of Materials Research, 2013, 28, 1517-1528.	1.2	13
106	Fretting wear behaviour of hydroxyapatite–titanium composites in simulated body fluid, supplemented with 5 g l ^{â~'1} bovine serum albumin. Journal Physics D: Applied Physics, 2013, 46, 404004.	1.3	21
107	Optical Property Characterization of Novel Graphene-X (X=Ag, Au and Cu) Nanoparticle Hybrids. Journal of Nanomaterials, 2013, 2013, 1-9.	1.5	30
108	Solidification Behaviour of Ti–Cu–Fe–Co–Ni High Entropy Alloys. Transactions of the Indian Institute of Metals, 2012, 65, 725-730.	0.7	56

#	Article	IF	Citations
109	HDPE-Quasicrystal Composite: Fabrication and Wear Resistance. Transactions of the Indian Institute of Metals, 2012, 65, 13-20.	0.7	2
110	Cytocompatibility property evaluation of gas pressure sintered SiAlON–SiC composites with L929 fibroblast cells and Saos-2 osteoblast-like cells. Materials Science and Engineering C, 2012, 32, 464-469.	3.8	18
111	Preparation of ultrafine CsCl crystallites by combined cryogenic and room temperature ball milling. Ceramics International, 2011, 37, 3677-3686.	2.3	22
112	Mechanism of film growth of pulsed electrodeposition of nanocrystalline copper in presence of thiourea. Journal of Nanoparticle Research, 2011, 13, 6005-6012.	0.8	10
113	Combined Cryo and Room-Temperature Ball Milling to Produce Ultrafine Halide Crystallites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 1127-1137.	1.1	24
114	Spark Plasma Sintering of Nanocrystalline Cu and Cu-10ÂWtÂPct Pb Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 2072-2084.	1.1	28
115	Novel HDPE–quasicrystal composite fabricated for wear resistance. Philosophical Magazine, 2011, 91, 2944-2953.	0.7	3
116	Microstructural Evolution during Laser Resolidification of Fe-18 At. Pct Ge Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 574-582.	1.1	0
117	In vitro dissolution of calcium phosphate-mullite composite in simulated body fluid. Journal of Materials Science: Materials in Medicine, 2010, 21, 1817-1828.	1.7	30
118	Sintering, Phase Stability, and Properties of Calcium Phosphateâ€Mullite Composites. Journal of the American Ceramic Society, 2010, 93, 1639-1649.	1.9	49
119	Size effect on the lattice parameter of KCl during mechanical milling. Scripta Materialia, 2009, 61, 600-603.	2.6	29
120	Phase stability and microstructure development in hydroxyapatite–mullite system. Scripta Materialia, 2008, 58, 1054-1057.	2.6	58
121	Origin of ferromagnetism in ZnO codoped with Ga and Co: Experiment and theory. Physical Review B, 2008, 78, .	1.1	65
122	Densification and microstructure development in spark plasma sintered WC–6 wt% ZrO2 nanocomposites. Journal of Materials Research, 2007, 22, 1491-1501.	1.2	42
123	Synthesis, structure and three way catalytic activity of $Ce1\hat{a}^2xPtx/2Rhx/2O2\hat{a}^2\hat{l}^2$ (x=0.01 and 0.02) nano-crystallites: Synergistic effect in bimetal ionic catalysts. Applied Catalysis A: General, 2006, 315, 135-146.	2.2	32
124	Microstructural evolution in laser-ablation-deposited Fe–25 at.% Ge thin film. Journal of Materials Research, 2006, 21, 174-184.	1.2	3
125	Solidification of undercooled peritectic Fe–Ge alloy. Acta Materialia, 2005, 53, 3591-3600.	3.8	41
126	Mechanical Behavior of Novel Suction Cast Ti-Cu-Fe-Co-Ni High Entropy Alloys. Materials Science Forum, 0, 790-791, 503-508.	0.3	27

#	Article	IF	CITATIONS
127	In Situ Experiments: Paving Ways for Rapid Development of Structural Metallic Materials for a Sustainable Future. Journal of the Indian Institute of Science, 0, , 1.	0.9	O
128	High Entropy Alloys: Laboratory to Industrial Attempt. International Journal of Metalcasting, 0, , .	1.5	1