Frank Kaspar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1830299/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A global hydrological model for deriving water availability indicators: model tuning and validation. Journal of Hydrology, 2003, 270, 105-134.	2.3	911
2	Estimating the Impact of Global Change on Flood and Drought Risks in Europe: A Continental, Integrated Analysis. Climatic Change, 2006, 75, 273-299.	1.7	670
3	Development and testing of the WaterGAP 2 global model of water use and availability. Hydrological Sciences Journal, 2003, 48, 317-337.	1.2	663
4	Global estimates of water withdrawals and availability under current and future "business-as-usual― conditions. Hydrological Sciences Journal, 2003, 48, 339-348.	1.2	353
5	Evaluation of global horizontal irradiance estimates from ERA5 and COSMO-REA6 reanalyses using ground and satellite-based data. Solar Energy, 2018, 164, 339-354.	2.9	245
6	CLARA-SAL: a global 28 yr timeseries of Earth's black-sky surface albedo. Atmospheric Chemistry and Physics, 2013, 13, 3743-3762.	1.9	146
7	Pan European Phenological database (PEP725): a single point of access for European data. International Journal of Biometeorology, 2018, 62, 1109-1113.	1.3	146
8	CLARA-A1: a cloud, albedo, and radiation dataset from 28 yr of global AVHRR data. Atmospheric Chemistry and Physics, 2013, 13, 5351-5367.	1.9	122
9	A model-data comparison of European temperatures in the Eemian interglacial. Geophysical Research Letters, 2005, 32, .	1.5	119
10	Significant contribution of insolation to Eemian melting of the Greenland ice sheet. Nature Geoscience, 2011, 4, 679-683.	5.4	94
11	MiKlip: A National Research Project on Decadal Climate Prediction. Bulletin of the American Meteorological Society, 2016, 97, 2379-2394.	1.7	78
12	Monitoring of climate change in Germany – data, products and services of Germany's National Climate Data Centre. Advances in Science and Research, 2013, 10, 99-106.	1.0	72
13	An overview of the phenological observation network and the phenological database of Germany's national meteorological service (Deutscher Wetterdienst). Advances in Science and Research, 2014, 11, 93-99.	1.0	50
14	Climatological analysis of solar and wind energy in Germany using the Grosswetterlagen classification. Renewable Energy, 2021, 164, 1254-1266.	4.3	47
15	Northern hemisphere winter storm tracks of the Eemian interglacial and the last glacial inception. Climate of the Past, 2007, 3, 181-192.	1.3	39
16	Comparison of regional and global reanalysis near-surface winds with station observations over Germany. Advances in Science and Research, 2015, 12, 187-198.	1.0	39
17	A regional climate model study of the impact of tectonic and orbital forcing on African precipitation and vegetation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 369, 154-162.	1.0	35
18	Analysis of current validation practices in Europe for space-based climate data records of essential climate variables. International Journal of Applied Earth Observation and Geoinformation, 2015, 42, 150-161.	1.4	35

FRANK KASPAR

#	Article	IF	CITATIONS
19	Added value of regional reanalyses for climatological applications. Environmental Research Communications, 2019, 1, 071004.	0.9	35
20	Climate Impact Response Functions as Impact Tools in the Tolerable Windows Approach. Climatic Change, 2003, 56, 91-117.	1.7	30
21	Wind speed variability between 10 and 116â€ ⁻ m height from the regional reanalysis COSMO-REA6 compared to wind mast measurements over Northern Germany andÂtheÂNetherlands. Advances in Science and Research, 0, 13, 151-161.	1.0	27
22	An Overview of European Efforts in Generating Climate Data Records. Bulletin of the American Meteorological Society, 2018, 99, 349-359.	1.7	26
23	Regional atmospheric reanalysis activities at Deutscher Wetterdienst: review of evaluation results and application examples with a focus on renewable energy. Advances in Science and Research, 0, 17, 115-128.	1.0	26
24	Worldwide Survey of Awareness and Needs Concerning Reanalyses and Respondents Views on Climate Services. Bulletin of the American Meteorological Society, 2016, 97, 1461-1473.	1.7	23
25	Data rescue of national and international meteorological observations at Deutscher Wetterdienst. Advances in Science and Research, 2015, 12, 57-61.	1.0	23
26	Simulated Relationships between Regional Temperatures and Large-Scale Circulation: 125 kyr BP (Eemian) and the Preindustrial Period. Journal of Climate, 2005, 18, 4032-4045.	1.2	22
27	Simulation of East African precipitation patterns with the regional climate model CLM. Meteorologische Zeitschrift, 2008, 17, 511-517.	0.5	22
28	The SASSCAL contribution to climate observation, climate data management and data rescue in Southern Africa. Advances in Science and Research, 2015, 12, 171-177.	1.0	22
29	Simulation of the role of solar and orbital forcing on climate. Advances in Space Research, 2006, 37, 1629-1634.	1.2	20
30	What's on the 5th IPCC Report for West Africa?. , 2016, , 7-23.		18
31	The GLASS model: a strategy for quantifying global environmental security. Environmental Science and Policy, 2001, 4, 1-12.	2.4	16
32	33. Simulations of the Eemian interglacial and the subsequent glacial inception with a coupled ocean-atmosphere general circulation model. Developments in Quaternary Sciences, 2007, , 499-515.	0.1	15
33	Methodologies to characterize uncertainties in regional reanalyses. Advances in Science and Research, 2015, 12, 207-218.	1.0	15
34	A climatological assessment of balancing effects and shortfall risks of photovoltaics and wind energy in Germany and Europe. Advances in Science and Research, 0, 16, 119-128.	1.0	15
35	Evaluating renewable-energy-relevant parameters of COSMO-REA6 by comparison with satellite data, station observations and other reanalyses. Meteorologische Zeitschrift, 2019, 28, 347-360.	0.5	14
36	2. Insolation during interglacial. Developments in Quaternary Sciences, 2007, 7, 13-27.	0.1	13

FRANK KASPAR

#	Article	IF	CITATIONS
37	Impacts of tectonic and orbital forcing on East African climate: a comparison based on global climate model simulations. International Journal of Earth Sciences, 2010, 99, 1677-1686.	0.9	11
38	SASSCAL WeatherNet: present state, challenges, and achievements of the regional climatic observation network and database. Biodiversity and Ecology = Biodiversitat Und Okologie, 2018, 6, 34-43.	0.2	11
39	Importance of precipitation seasonality for the interpretation of Eemian ice core isotope records from Greenland. Climate of the Past, 2013, 9, 1589-1600.	1.3	10
40	User awareness concerning feedback data and input observations used in reanalysis systems. Advances in Science and Research, 2015, 12, 63-67.	1.0	9
41	Climate reference stations in Germany: Status,ÂparallelÂmeasurementsÂand homogeneityÂofÂtemperatureÂtimeÂseries. Advances in Science and Research, 0, 13, 163-171.	1.0	9
42	Comparison of manual and automatic daily sunshine duration measurements at German climate reference stations. Advances in Science and Research, 0, 16, 175-183.	1.0	7
43	Comparison of 20th century and pre-industrial climate over South America in regional model simulations. Climate of the Past, 2012, 8, 1599-1620.	1.3	6
44	Interactive open access to climate observations from Germany. Advances in Science and Research, 0, 16, 75-83.	1.0	5
45	Operational generation of AVHRR-based cloud products for Europe and the Arctic at EUMETSAT's Satellite Application Facility on Climate Monitoring (CM-SAF). Advances in Science and Research, 2009, 3, 45-51.	1.0	5
46	Contributions to the Improvement of Climate Data Availability and Quality for Sub-Saharan Africa. Frontiers in Climate, 2022, 3, .	1.3	5
47	Improving the climate data management in the meteorological service of Angola: experience from SASSCAL. Advances in Science and Research, 0, 13, 97-105.	1.0	4
48	Verification and process oriented validation of the MiKlip decadal prediction system. Meteorologische Zeitschrift, 2016, 25, 629-630.	0.5	3
49	FAIR: a project to realize a user-friendly exchange of open weather data. Advances in Science and Research, 0, 17, 183-190.	1.0	3
50	Cooperation of meteorological services within SASSCAL on improving the management of observed climate data. Biodiversity and Ecology = Biodiversitat Und Okologie, 2018, 6, 22-29.	0.2	3
51	40. Chronology and climate forcing of the last four interglacials. Developments in Quaternary Sciences, 2007, 7, 597-614.	0.1	2
52	Simulation of the Eemian interglacial and possible mechanisms for the glacial inception. , 2007, , .		2
53	Analyzing the impact of automatization using parallel daily mean temperature series including breakpoint detection and homogenization. International Journal of Climatology, 2020, 40, 6544-6559.	1.5	2
54	Evaluation of gridding procedures for air temperature over Southern Africa. Advances in Science and Research, 0, 14, 163-173.	1.0	2

#	Article	IF	CITATIONS
55	Surface wind over Europe: Data and variability. International Journal of Climatology, 2023, 43, 134-156.	1.5	2
56	Editorial: Special issue on the "10.ÂDeutsche Klimatagung―(10thÂGerman Climate Conference), 21.–24.ÂSeptember 2015, Hamburg. Meteorologische Zeitschrift, 2018, 27, 87-88.	0.5	0