List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1829981/publications.pdf Version: 2024-02-01

Τοςμίο Δνίδο

#	Article	IF	CITATIONS
1	Video imaging of walking myosin V by high-speed atomic force microscopy. Nature, 2010, 468, 72-76.	13.7	773
2	Imaging modes of atomic force microscopy for application in molecular and cell biology. Nature Nanotechnology, 2017, 12, 295-307.	15.6	699
3	Traffic Jams Reduce Hydrolytic Efficiency of Cellulase on Cellulose Surface. Science, 2011, 333, 1279-1282.	6.0	501
4	High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes. Progress in Surface Science, 2008, 83, 337-437.	3.8	493
5	High-Speed Atomic Force Microscopy Reveals Rotary Catalysis of Rotorless F ₁ -ATPase. Science, 2011, 333, 755-758.	6.0	420
6	Filming Biomolecular Processes by High-Speed Atomic Force Microscopy. Chemical Reviews, 2014, 114, 3120-3188.	23.0	320
7	High-speed atomic force microscopy coming of age. Nanotechnology, 2012, 23, 062001.	1.3	296
8	High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin. Nature Nanotechnology, 2010, 5, 208-212.	15.6	292
9	Collaborative Non-Self Recognition System in S-RNase–Based Self-Incompatibility. Science, 2010, 330, 796-799.	6.0	286
10	Phase separation organizes the site of autophagosome formation. Nature, 2020, 578, 301-305.	13.7	263
11	Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy. Nature Protocols, 2012, 7, 1193-1206.	5.5	246
12	High-Speed AFM and Applications to Biomolecular Systems. Annual Review of Biophysics, 2013, 42, 393-414.	4.5	241
13	High-speed AFM and nano-visualization of biomolecular processes. Pflugers Archiv European Journal of Physiology, 2008, 456, 211-225.	1.3	224
14	Direct Observation of Processive Movement by Individual Myosin V Molecules. Biochemical and Biophysical Research Communications, 2000, 272, 586-590.	1.0	192
15	Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy. Nature Communications, 2017, 8, 1430.	5.8	184
16	Dynamic proportional-integral-differential controller for high-speed atomic force microscopy. Review of Scientific Instruments, 2006, 77, 083704.	0.6	177
17	Active damping of the scanner for high-speed atomic force microscopy. Review of Scientific Instruments, 2005, 76, 053708.	0.6	166
18	The Intrinsically Disordered Protein Atg13 Mediates Supramolecular Assembly of Autophagy Initiation Complexes. Developmental Cell, 2016, 38, 86-99.	3.1	161

#	Article	IF	CITATIONS
19	Structure of the mitochondrial import gate reveals distinct preprotein paths. Nature, 2019, 575, 395-401.	13.7	146
20	High-speed atomic force microscopy and its future prospects. Biophysical Reviews, 2018, 10, 285-292.	1.5	139
21	Imaging of nucleic acids with atomic force microscopy. Methods, 2011, 54, 274-283.	1.9	137
22	A High-Speed Atomic Force Microscope for Studying Biological Macromolecules in Action. Japanese Journal of Applied Physics, 2002, 41, 4851-4856.	0.8	125
23	A High-speed Atomic Force Microscope for Studying Biological Macromolecules in Action. ChemPhysChem, 2003, 4, 1196-1202.	1.0	118
24	Fast-scanning atomic force microscopy reveals the ATP/ADP-dependent conformational changes of GroEL. EMBO Journal, 2006, 25, 4567-4576.	3.5	117
25	Surface topography of membrane domains. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 703-718.	1.4	117
26	Cofilin-induced unidirectional cooperative conformational changes in actin filaments revealed by high-speed atomic force microscopy. ELife, 2015, 4, .	2.8	117
27	Single-Molecule Imaging on Living Bacterial Cell Surface by High-Speed AFM. Journal of Molecular Biology, 2012, 422, 300-309.	2.0	114
28	Dynamics of Nucleosomes Assessed with Time-Lapse High-Speed Atomic Force Microscopy. Biochemistry, 2011, 50, 7901-7908.	1.2	113
29	Inner lumen proteins stabilize doublet microtubules in cilia and flagella. Nature Communications, 2019, 10, 1143.	5.8	110
30	The 2018 correlative microscopy techniques roadmap. Journal Physics D: Applied Physics, 2018, 51, 443001.	1.3	99
31	High-speed Atomic Force Microscopy for Capturing Dynamic Behavior of Protein Molecules at Work. E-Journal of Surface Science and Nanotechnology, 2005, 3, 384-392.	0.1	98
32	IgGs are made for walking on bacterial and viral surfaces. Nature Communications, 2014, 5, 4394.	5.8	97
33	Polarized actin bundles formed by human fascin-1: their sliding and disassembly on myosinâ $\in f$ II and myosinâ $\in f$ V in vitro. Journal of Neurochemistry, 2003, 87, 676-685.	2.1	96
34	Effect of Temperature on the Floral Scent Emission and Endogenous Volatile Profile of <i>Petunia axillaris</i> . Bioscience, Biotechnology and Biochemistry, 2008, 72, 110-115.	0.6	96
35	Visualization of Intrinsically Disordered Regions of Proteins by High‧peed Atomic Force Microscopy. ChemPhysChem, 2008, 9, 1859-1866.	1.0	95
36	Dynamics of bacteriorhodopsin 2D crystal observed by high-speed atomic force microscopy. Journal of Structural Biology, 2009, 167, 153-158.	1.3	93

#	Article	IF	CITATIONS
37	Wide-area scanner for high-speed atomic force microscopy. Review of Scientific Instruments, 2013, 84, 053702.	0.6	90
38	Long-tip high-speed atomic force microscopy for nanometer-scale imaging in live cells. Scientific Reports, 2015, 5, 8724.	1.6	89
39	Two-way traffic of glycoside hydrolase family 18 processive chitinases on crystalline chitin. Nature Communications, 2014, 5, 3975.	5.8	82
40	Tandemly arranged <i>chalcone synthase A</i> genes contribute to the spatially regulated expression of siRNA and the natural bicolor floral phenotype in <i>Petunia hybrida</i> . Plant Journal, 2012, 70, 739-749.	2.8	80
41	Trade-off between Processivity and Hydrolytic Velocity of Cellobiohydrolases at the Surface of Crystalline Cellulose. Journal of the American Chemical Society, 2014, 136, 4584-4592.	6.6	77
42	Nuclear DNA Content as an Index Character Discriminating Taxa in the Genus Petunia sensu Jussieu (Solanaceae). Annals of Botany, 2000, 85, 665-673.	1.4	76
43	Evidence That Intragenic Recombination Contributes to Allelic Diversity of the S-RNase Gene at the Self-Incompatibility (S) Locus in Petunia inflata. Plant Physiology, 2001, 125, 1012-1022.	2.3	74
44	Highâ€speed atomic force microscopy for observing dynamic biomolecular processes. Journal of Molecular Recognition, 2007, 20, 448-458.	1.1	74
45	High-speed AFM imaging. Current Opinion in Structural Biology, 2014, 28, 63-68.	2.6	73
46	High-Speed Atomic Force Microscopy for Studying the Dynamic Behavior of Protein Molecules at Work. Japanese Journal of Applied Physics, 2006, 45, 1897-1903.	0.8	72
47	Floral anthocyanins in wild taxa of Petunia (Solanaceae). Biochemical Systematics and Ecology, 1999, 27, 623-650.	0.6	71
48	Structural and dynamics analysis of intrinsically disordered proteins by high-speed atomic force microscopy. Nature Nanotechnology, 2021, 16, 181-189.	15.6	69
49	Scanning Force Microscopy of the Interaction Events between a Single Molecule of Heavy Meromyosin and Actin. Biochemical and Biophysical Research Communications, 1997, 234, 178-182.	1.0	68
50	Deciphering the Structure, Growth and Assembly of Amyloid-Like Fibrils Using High-Speed Atomic Force Microscopy. PLoS ONE, 2010, 5, e13240.	1.1	66
51	High-Speed Atomic Force Microscopy Techniques for Observing Dynamic Biomolecular Processes. Methods in Enzymology, 2010, 475, 541-564.	0.4	66
52	Emission Mechanism of Floral Scent inPetunia axillaris. Bioscience, Biotechnology and Biochemistry, 2005, 69, 773-777.	0.6	65
53	Tip-sample distance control using photothermal actuation of a small cantilever for high-speed atomic force microscopy. Review of Scientific Instruments, 2007, 78, 083702.	0.6	65
54	High resonance frequency force microscope scanner using inertia balance support. Applied Physics Letters, 2008, 92, 243119.	1.5	65

#	Article	IF	CITATIONS
55	High-speed atomic force microscope combined with single-molecule fluorescence microscope. Review of Scientific Instruments, 2013, 84, 073706.	0.6	65
56	Streptavidin 2D Crystal Substrates for Visualizing Biomolecular Processes by Atomic Force Microscopy. Biophysical Journal, 2009, 97, 2358-2367.	0.2	64
57	Real-Time Visualization of Assembling of a Sphingomyelin-Specific Toxin on Planar Lipid Membranes. Biophysical Journal, 2013, 105, 1397-1405.	0.2	64
58	Capturing transient antibody conformations with DNA origami epitopes. Nature Communications, 2020, 11, 3114.	5.8	64
59	Functional extension of high-speed AFM for wider biological applications. Ultramicroscopy, 2016, 160, 182-196.	0.8	62
60	Duplication of the S-locus F-box gene is associated with breakdown of pollen function in an S-haplotype identified in a natural population of self-incompatible Petunia axillaris. Plant Molecular Biology, 2005, 57, 141-153.	2.0	60
61	High-speed XYZ-nanopositioner for scanning ion conductance microscopy. Applied Physics Letters, 2017, 111, .	1.5	60
62	High-speed atomic force microscopy. Current Opinion in Chemical Biology, 2019, 51, 105-112.	2.8	59
63	Contact-Mode High-Resolution High-Speed Atomic Force Microscopy Movies of the Purple Membrane. Biophysical Journal, 2009, 97, 1354-1361.	0.2	58
64	Phylogenetic Analysis of Petunia sensu Jussieu (Solanaceae) using Chloroplast DNA RFLP. Annals of Botany, 2005, 96, 289-297.	1.4	56
65	Visualization and structural analysis of the bacterial magnetic organelle magnetosome using atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9382-9387.	3.3	55
66	Dynamic structural states of ClpB involved in its disaggregation function. Nature Communications, 2018, 9, 2147.	5.8	55
67	Structural Changes in Bacteriorhodopsin in Response to Alternate Illumination Observed by High‧peed Atomic Force Microscopy. Angewandte Chemie - International Edition, 2011, 50, 4410-4413.	7.2	54
68	Anisotropic diffusion of point defects in a two-dimensional crystal of streptavidin observed by high-speed atomic force microscopy. Nanotechnology, 2008, 19, 384009.	1.3	53
69	A cationic polymethacrylate-copolymer acts as an agonist for β-amyloid and an antagonist for amylin fibrillation. Chemical Science, 2019, 10, 3976-3986.	3.7	52
70	Breakdown of Self-Incompatibility in a Natural Population ofPetunia axillaris Caused by Loss of Pollen Function. Plant Physiology, 2003, 131, 1903-1912.	2.3	51
71	Successive Glycosyltransfer Activity and Enzymatic Characterization of Pectic Polygalacturonate 4-α-Galacturonosyltransferase Solubilized from Pollen Tubes ofPetunia axillaris Using Pyridylaminated Oligogalacturonates as Substrates. Plant Physiology, 2002, 130, 374-379.	2.3	50
72	Single-molecule Imaging Analysis of Elementary Reaction Steps of Trichoderma reesei Cellobiohydrolase I (Cel7A) Hydrolyzing Crystalline Cellulose Iα and IIII. Journal of Biological Chemistry, 2014, 289, 14056-14065.	1.6	50

#	Article	IF	CITATIONS
73	Insight into structural remodeling of the FlhA ring responsible for bacterial flagellar type III protein export. Science Advances, 2018, 4, eaao7054.	4.7	50
74	High-Speed Atomic Force Microscopy Reveals Loss of Nuclear Pore Resilience as a Dying Code in Colorectal Cancer Cells. ACS Nano, 2017, 11, 5567-5578.	7.3	46
75	Fast phase imaging in liquids using a rapid scan atomic force microscope. Applied Physics Letters, 2006, 89, 213112.	1.5	45
76	Role of trimer–trimer interaction of bacteriorhodopsin studied by optical spectroscopy and high-speed atomic force microscopy. Journal of Structural Biology, 2013, 184, 2-11.	1.3	45
77	Breakdown of self-incompatibility in a natural population of Petunia axillaris caused by a modifier locus that suppresses the expression of an S-RNase gene. Sexual Plant Reproduction, 2003, 15, 255-263.	2.2	44
78	Identification of the Single Specific IQ Motif of Myosin V from Which Calmodulin Dissociates in the Presence of Ca2+Ââ€. Biochemistry, 2006, 45, 11598-11604.	1.2	44
79	AAA+ Chaperone ClpX Regulates Dynamics of Prokaryotic Cytoskeletal Protein FtsZ. Journal of Biological Chemistry, 2010, 285, 6648-6657.	1.6	44
80	Na ⁺ -induced structural transition of MotPS for stator assembly of the <i>Bacillus</i> flagellar motor. Science Advances, 2017, 3, eaao4119.	4.7	44
81	Revealing circadian mechanisms of integration and resilience by visualizing clock proteins working in real time. Nature Communications, 2018, 9, 3245.	5.8	43
82	Structure of the UHRF1 Tandem Tudor Domain Bound to a Methylated Non-histone Protein, LIG1, Reveals Rules for Binding and Regulation. Structure, 2019, 27, 485-496.e7.	1.6	41
83	High-Speed Atomic Force Microscopic Observation of ATP-Dependent Rotation of the AAA+ Chaperone p97. Structure, 2013, 21, 1992-2002.	1.6	40
84	Direct observation of surfactant aggregate behavior on a mica surface using high-speed atomic force microscopy. Chemical Communications, 2011, 47, 4974.	2.2	39
85	Free Energy Landscape and Dynamics of Supercoiled DNA by High-Speed Atomic Force Microscopy. ACS Nano, 2018, 12, 11907-11916.	7.3	39
86	Structural Insights into the Substrate Specificity Switch Mechanism of the Type III Protein Export Apparatus. Structure, 2019, 27, 965-976.e6.	1.6	39
87	Directly watching biomolecules in action by high-speed atomic force microscopy. Biophysical Reviews, 2017, 9, 421-429.	1.5	38
88	Dynamic clustering of dynamin-amphiphysin helices regulates membrane constriction and fission coupled with GTP hydrolysis. ELife, 2018, 7, .	2.8	38
89	Spectroscopic isolation of ES complexes of myosin subfragment-1 ATPase by fluorescence quenching. Biochemical and Biophysical Research Communications, 1982, 109, 1-6.	1.0	37
90	Intrageneric relationships of maple trees based on the chloroplast DNA restriction fragment length polymorphisms. Journal of Plant Research, 1998, 111, 441-451.	1.2	37

#	Article	IF	CITATIONS
91	CYK4 Promotes Antiparallel Microtubule Bundling by Optimizing MKLP1 Neck Conformation. PLoS Biology, 2015, 13, e1002121.	2.6	37
92	Multiple Interactions of the Intrinsically Disordered Region between the Helicase and Nuclease Domains of the Archaeal Hef Protein. Journal of Biological Chemistry, 2014, 289, 21627-21639.	1.6	36
93	Dynamics of oligomer and amyloid fibril formation by yeast prion Sup35 observed by high-speed atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7831-7836.	3.3	36
94	Differences in the floral anthocyanin content of red petunias and Petunia exserta. Phytochemistry, 2000, 54, 495-501.	1.4	35
95	Phylogenetic analysis of the genus Petunia (Solanaceae) based on the sequence of the Hf1 gene. Journal of Plant Research, 2007, 120, 385-397.	1.2	35
96	Feed-Forward Compensation for High-Speed Atomic Force Microscopy Imaging of Biomolecules. Japanese Journal of Applied Physics, 2006, 45, 1904-1908.	0.8	33
97	High-speed atomic force microscopy imaging of live mammalian cells. Biophysics and Physicobiology, 2017, 14, 127-135.	0.5	32
98	Distribution of self-compatible and self-incompatible populations of Petunia axillaris (Solanaceae) outside Uruguay. Journal of Plant Research, 2006, 119, 419-430.	1.2	31
99	Potential Prepore Trimer Formation by the Bacillus thuringiensis Mosquito-specific Toxin. Journal of Biological Chemistry, 2015, 290, 20793-20803.	1.6	30
100	Faster high-speed atomic force microscopy for imaging of biomolecular processes. Review of Scientific Instruments, 2021, 92, 033705.	0.6	30
101	The path to visualization of walking myosin V by high-speed atomic force microscopy. Biophysical Reviews, 2014, 6, 237-260.	1.5	29
102	Two-Ball Structure of the Flagellar Hook-Length Control Protein FliK as Revealed by High-Speed Atomic Force Microscopy. Journal of Molecular Biology, 2015, 427, 406-414.	2.0	29
103	Probing Structural Dynamics of an Artificial Protein Cage Using High-Speed Atomic Force Microscopy. Nano Letters, 2015, 15, 1331-1335.	4.5	29
104	Development of high-speed ion conductance microscopy. Review of Scientific Instruments, 2019, 90, 123704.	0.6	29
105	Diversity of physical properties of bacterial extracellular membrane vesicles revealed through atomic force microscopy phase imaging. Nanoscale, 2020, 12, 7950-7959.	2.8	29
106	High-speed atomic force microscopy. Microscopy (Oxford, England), 2013, 62, 81-93.	0.7	28
107	Self- and Cross-Seeding on α-Synuclein Fibril Growth Kinetics and Structure Observed by High-Speed Atomic Force Microscopy. ACS Nano, 2020, 14, 9979-9989.	7.3	28
108	Two novel transposable elements in a cytochrome P450 gene govern anthocyanin biosynthesis of commercial petunias. Gene, 2005, 358, 121-126.	1.0	27

#	Article	IF	CITATIONS
109	Green corolla segments in a wild Petunia species caused by a mutation in FBP2, a SEPALLATA-like MADS box gene. Planta, 2008, 228, 401-409.	1.6	27
110	Phosphorylation-Coupled Intramolecular Dynamics of Unstructured Regions in Chromatin Remodeler FACT. Biophysical Journal, 2013, 104, 2222-2234.	0.2	26
111	High-speed atomic force microscopy reveals strongly polarized movement of clostridial collagenase along collagen fibrils. Scientific Reports, 2016, 6, 28975.	1.6	26
112	Link between the Enzymatic Kinetics and Mechanical Behavior in an Actomyosin Motor. Biophysical Journal, 2001, 80, 379-397.	0.2	25
113	High-speed near-field fluorescence microscopy combined with high-speed atomic force microscopy for biological studies. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129325.	1.1	25
114	High-Speed AFM Reveals Molecular Dynamics of Human Influenza A Hemagglutinin and Its Interaction with Exosomes. Nano Letters, 2020, 20, 6320-6328.	4.5	25
115	Visualization of Cellobiohydrolase I from Trichoderma reesei Moving on Crystalline Cellulose Using High-Speed Atomic Force Microscopy. Methods in Enzymology, 2012, 510, 169-182.	0.4	24
116	Distribution of Petunia axillaris Sensu Lato in Uruguay as Revealed by Discriminant Analysis of the Live Plants Journal of the Japanese Society for Horticultural Science, 1995, 64, 381-391.	0.4	23
117	Real-Time Monitoring of Lipid Exchange via Fusion of Peptide Based Lipid-Nanodiscs. Chemistry of Materials, 2018, 30, 3204-3207.	3.2	23
118	Spatiotemporally tracking of nano-biofilaments inside the nuclear pore complex core. Biomaterials, 2020, 256, 120198.	5.7	23
119	Thermally Driven Approach To Fill Sub-10-nm Pipettes with Batch Production. Analytical Chemistry, 2019, 91, 14080-14084.	3.2	22
120	An ultra-wide scanner for large-area high-speed atomic force microscopy with megapixel resolution. Scientific Reports, 2021, 11, 13003.	1.6	22
121	Molecular machines directly observed by highâ€speed atomic force microscopy. FEBS Letters, 2013, 587, 997-1007.	1.3	21
122	Millisecond dynamic of SARSâ \in CoVâ \in 2 spike and its interaction with ACE2 receptor and small extracellular vesicles. Journal of Extracellular Vesicles, 2021, 10, e12170.	5.5	21
123	A New Brazilian Species of Petunia (Solanaceae) from Interior Santa Catarina and Rio Grande do Sul, Brazil. Brittonia, 1996, 48, 217.	0.8	20
124	Delphinidin accumulation is associated with abnormal flower development in petunias. Phytochemistry, 2004, 65, 2219-2227.	1.4	20
125	Visualization of Mobility by Atomic Force Microscopy. , 2012, 896, 57-69.		20
126	High-Resolution Imaging of Myosin Motor in Action by a High-Speed Atomic Force Microscope. Advances in Experimental Medicine and Biology, 2003, 538, 119-127.	0.8	20

#	Article	IF	CITATIONS
127	High-Speed Atomic Force Microscopy. Japanese Journal of Applied Physics, 2012, 51, 08KA02.	0.8	20
128	Two New Species of Petunia (Solanaceae) from Southern Rio Grande do Sul, Brazil. Brittonia, 1998, 50, 483.	0.8	19
129	Chaperonin GroEL–GroES Functions as both Alternating and Non-Alternating Engines. Journal of Molecular Biology, 2016, 428, 3090-3101.	2.0	19
130	Two new species of Petunia (Solanaceae) from southern Brazil. Botanical Journal of the Linnean Society, 1993, 111, 265-280.	0.8	18
131	Three groups of species in Petunia sensu Jussieu (Solanaceae) inferred from the intact seed morphology. American Journal of Botany, 1999, 86, 302-305.	0.8	18
132	Control techniques in high-speed atomic force microscopy. , 2008, , .		17
133	Single-Unit Imaging of Membrane Protein-Embedded Nanodiscs from Two Oriented Sides by High-Speed Atomic Force Microscopy. Structure, 2019, 27, 152-160.e3.	1.6	17
134	High-Speed Atomic Force Microscopy Reveals Factors Affecting the Processivity of Chitinases during Interfacial Enzymatic Hydrolysis of Crystalline Chitin. ACS Catalysis, 2020, 10, 13606-13615.	5.5	17
135	A New Brazilian Species of Petunia (Solanaceae) from the Serra da Mantiqueira. Brittonia, 1994, 46, 340.	0.8	16
136	Japan AFM roadmap 2006. Nanotechnology, 2007, 18, 084001.	1.3	16
137	The induction of RANKL molecule clustering could stimulate early osteoblast differentiation. Biochemical and Biophysical Research Communications, 2019, 509, 435-440.	1.0	16
138	Direct visualization of avian influenza H5N1 hemagglutinin precursor and its conformational change by high-speed atomic force microscopy. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129313.	1.1	16
139	Visualization of intrinsically disordered proteins by high-speed atomic force microscopy. Current Opinion in Structural Biology, 2022, 72, 260-266.	2.6	16
140	A Morphological Study of the Petunia integrifolia Complex (Solanaceae). Annals of Botany, 2005, 96, 887-900.	1.4	15
141	High-Speed Atomic Force Microscopy. Japanese Journal of Applied Physics, 2012, 51, 08KA02.	0.8	15
142	Substrate protein dependence of GroEL–GroES interaction cycle revealed by high-speed atomic force microscopy imaging. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170180.	1.8	15
143	Chained Structure of Dimeric F ₁ -like ATPase in Mycoplasma mobile Gliding Machinery. MBio, 2021, 12, e0141421.	1.8	15
144	High-Speed Atomic Force Microscopy and Biomolecular Processes. Methods in Molecular Biology, 2011, 736, 285-300.	0.4	15

#	Article	IF	CITATIONS
145	Recent Advances in the Glass Pipet: from Fundament to Applications. Analytical Chemistry, 2022, 94, 324-335.	3.2	15
146	An ultrafast piezoelectric Z-scanner with a resonance frequency above 1.1ÂMHz for high-speed atomic force microscopy. Review of Scientific Instruments, 2022, 93, 013701.	0.6	15
147	Characteristic Instabilities in HfAlO Metal–Insulator–Metal Capacitors Under Constant-Voltage Stress. IEEE Transactions on Electron Devices, 2008, 55, 1359-1365.	1.6	14
148	Self-Assembly Properties and Dynamics of Synthetic Proteo–Nucleic Building Blocks in Solution and on Surfaces. Bioconjugate Chemistry, 2011, 22, 1824-1834.	1.8	14
149	High-Speed Atomic Force Microscopy Reveals Spatiotemporal Dynamics of Histone Protein H2A Involution by DNA Inchworming. Journal of Physical Chemistry Letters, 2021, 12, 3837-3846.	2.1	14
150	Petunia guarapuavensis (Solanaceae): A New Species from planalto of Parana and Santa Catarina, Brazil. Brittonia, 1995, 47, 328.	0.8	13
151	Metabolic Regulation of Floral Scent inPetunia axillarisLines: Biosynthetic Relationship between Dihydroconiferyl Acetate andiso-Eugenol. Bioscience, Biotechnology and Biochemistry, 2007, 71, 458-463.	0.6	13
152	Metastable asymmetrical structure of a shaftless V ₁ motor. Science Advances, 2019, 5, eaau8149.	4.7	13
153	Geometrical Characterization of Glass Nanopipettes with Sub-10 nm Pore Diameter by Transmission Electron Microscopy. Analytical Chemistry, 2020, 92, 15388-15393.	3.2	13
154	Millisecond Conformational Dynamics of Skeletal Myosin II Power Stroke Studied by High-Speed Atomic Force Microscopy. ACS Nano, 2021, 15, 2229-2239.	7.3	13
155	Nano-scale physical properties characteristic to metastatic intestinal cancer cells identified by high-speed scanning ion conductance microscope. Biomaterials, 2022, 280, 121256.	5.7	13
156	EXISTENCE OF TWO STOMATAL SHAPES IN THE GENUS DENDROBIUM (ORCHIDACEAE) AND ITS SYSTEMATIC SIGNIFICANCE. American Journal of Botany, 1992, 79, 946-952.	0.8	12
157	PCR-Based Markers for the Genotype Identification of Flavonoid- 3', 5'-Hydroxylase Genes Governing Floral Anthocyanin Biosynthesis in Commercial Petunias. Breeding Science, 2006, 56, 389-397.	0.9	12
158	Analysis of expressed sequence tags from Petunia flowers. Plant Science, 2007, 173, 495-500.	1.7	12
159	Metabolome profiling of floral scent production in Petunia axillaris. Phytochemistry, 2013, 90, 37-42.	1.4	12
160	Quantum-dot antibody conjugation visualized at the single-molecule scale with high-speed atomic force microscopy. Colloids and Surfaces B: Biointerfaces, 2018, 167, 267-274.	2.5	11
161	Negatively Charged Lipids Are Essential for Functional and Structural Switch of Human 2-Cys Peroxiredoxin II. Journal of Molecular Biology, 2018, 430, 602-610.	2.0	11
162	Movements of Mycoplasma mobile Gliding Machinery Detected by High-Speed Atomic Force Microscopy. MBio, 2021, 12, e0004021.	1.8	11

#	Article	IF	CITATIONS
163	Single-Molecule Imaging of a Micro-Brownian Motion of a Chiral Helical π-Conjugated Polymer as a Molecular Spring Driven by Thermal Fluctuations. Chemistry Letters, 2009, 38, 690-691.	0.7	9
164	Method of mechanical holding of cantilever chip for tip-scan high-speed atomic force microscope. Review of Scientific Instruments, 2015, 86, 063703.	0.6	9
165	High-speed atomic force microscopy reveals a three-state elevator mechanism in the citrate transporter CitS. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	9
166	Molecular evidence that most RNAs required for germination and pollen tube growth are stored in the mature pollen grain in petunia. Genes and Genetic Systems, 2010, 85, 259-263.	0.2	8
167	Architecture of zero-latency ultrafast amplitude detector for high-speed atomic force microscopy. Applied Physics Letters, 2021, 119, .	1.5	8
168	Single Molecular Imaging of a micro-Brownian Motion and a Bond Scission of a Supramolecular Chiral π-Conjugated Polymer as a Molecular Bearing Driven by Thermal Fluctuations. Chemistry Letters, 2007, 36, 1378-1379.	0.7	7
169	EXISTENCE OF TWO STOMATAL SHAPES IN THE GENUS DENDROBIUM (ORCHIDACEAE) AND ITS SYSTEMATIC SIGNIFICANCE. , 1992, 79, 946.		7
170	Biophysical reviews top five: atomic force microscopy in biophysics. Biophysical Reviews, 2021, 13, 455-458.	1.5	6
171	Angular Spacing Control for Segmented Data Pages in Angle-Multiplexed Holographic Memory. Japanese Journal of Applied Physics, 2011, 50, 09ME02.	0.8	6
172	Conformational Tuning of Amylin by Charged Styrene-Maleic-Acid Copolymers. Journal of Molecular Biology, 2022, 434, 167385.	2.0	6
173	Reconstructing Historical Events that Occurred in the Petunia Hf1 Gene, which Governs Anthocyanin Biosynthesis, and Effects of Artificial Selection by Breeding. Breeding Science, 2007, 57, 203-211.	0.9	5
174	Two-State Exchange Dynamics in Membrane-Embedded Oligosaccharyltransferase Observed in Real-Time by High-Speed AFM. Journal of Molecular Biology, 2020, 432, 5951-5965.	2.0	5
175	Direct Imaging of Walking Myosin V by High-Speed Atomic Force Microscopy. Methods in Molecular Biology, 2018, 1805, 103-122.	0.4	5
176	Holographic Read-Only Memory Fabricated by Deposition of Reflector after Writing Process with Aromatic Photopolymer Recording Layer. Japanese Journal of Applied Physics, 2010, 49, 08KD02.	0.8	4
177	Biophysics in Kanazawa University. Biophysical Reviews, 2020, 12, 249-251.	1.5	4
178	DC-stress-induced Degradation of Analog Characteristics in HfxAl(1-x)O MIM Capacitors. , 2006, , .		3
179	RNA silencing in white petunia flowers creates pigmentation patterns invisible to the human eye. Journal of Plant Physiology, 2012, 169, 920-923.	1.6	3
180	High-Speed Atomic Force Microscopy to Study Myosin Motility. Advances in Experimental Medicine and Biology, 2020, 1239, 127-152.	0.8	3

#	Article	IF	CITATIONS
181	High-Speed AFM and Imaging of Biomolecular Processes. , 2013, , .		3
182	Toward the Next Generation of HS-AFM. Nanoscience and Technology, 2022, , 107-120.	1.5	3
183	Angular Spacing Control for Segmented Data Pages in Angle-Multiplexed Holographic Memory. Japanese Journal of Applied Physics, 2011, 50, 09ME02.	0.8	2
184	High-Speed Atomic Force Microscopy (AFM). , 2013, , 984-987.		2
185	Filming Dynamic Processes of Proteins by High-Speed Afm. Biophysical Journal, 2013, 104, 386a.	0.2	2
186	Page Data Multiplexing for Vector Wave Memories Having Polarization Recording Material Doped with Aromatic Ketone Derivative. Japanese Journal of Applied Physics, 2013, 52, 09LD15.	0.8	2
187	Studies on the impellers generating force in muscle. Biophysical Reviews, 2020, 12, 767-769.	1.5	2
188	Holographic Data Storage Media Employing Phase-Change Reflector. Japanese Journal of Applied Physics, 2007, 46, 3855-3857.	0.8	1
189	Fabrication of 3D micro-cantilevers based on MBE-grown strained semiconductor layers. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2210-2213.	1.3	1
190	High-Speed Atomic Force Microscopy. , 2009, , 487.		1
191	High-speed Atomic Force Microscopy for Capturing Dynamic Behavior of Biological Molecules. Hyomen Kagaku, 2010, 31, 405-410.	0.0	1
192	Video Imaging of Protein Molecules in Action by High-speed Atomic Force Microscopy. Seibutsu Butsuri, 2011, 51, 022-025.	0.0	1
193	Molecular Chaperones. Nanoscience and Technology, 2022, , 285-304.	1.5	1
194	1P274 Structural dynamics of acto-myosin V revealed by high-speed AFM(9. Molecular motor (I),Poster) Tj ETQqC	0.0 rgBT	/Oyerlock 10
195	1P069 Observation of GroEL-GroES action by high speed atomic force microscopy(2. Protein function) Tj ETQq1	1 0.78431 0.0	4 ggBT /Ove
196	1P070 Single-molecule imaging of chaperonin GroEL-GroES dynamics using high-speed atomic force microscopy(2. Protein function (I),Poster Session,Abstract,Meeting Program of EABS & BSJ 2006). Seibutsu Butsuri, 2006, 46, S164.	0.0	0
197	1P504 Observation of biological samples at high resolution by high-speed FM-AFM(25. New methods and) Tj ETQ S272.	q1 1 0.78 0.0	4314 rgBT /(0
198	2P532 High-resolution dynamic imaging of membrane proteins by high-speed AFM(52. Bio-imaging,Poster) Tj ETC	2q8.80 rg	BT_/Overlock

#	Article	IF	CITATIONS
199	2P533 Improvement of high-speed AFM scanner(52. Bio-imaging,Poster Session,Abstract,Meeting) Tj ETQq1 1 0.	.784314 r 0.014 r	gBT /Overlock
200	1P276 Analysis of AFM images of Protein in Light of its Atomic Model(9. Molecular motor (I),Poster) Tj ETQq0 0	רא rgBT /Ov סייני:	verlock 10 Tf 5
201	1P277 Calcium Regulation of Myosin V(9. Molecular motor (I),Poster Session,Abstract,Meeting) Tj ETQq1 1 0.78	4314 rgB 0.0	T /Qverlock 10
202	2P222 Dynamic Behavior of Dynein C Captured by High-speed AFM(37. Molecular motor (II),Poster) Tj ETQq0 0 () rgBT /Ov	verlgck 10 Tf 5
203	2P200 Simultaneous observation of myosin V and polyacrylamide bead along actin tracks using two colors TIRFM(37. Molecular motor (II),Poster Session,Abstract,Meeting Program of EABS & amp; BSJ) Tj ETQq1 1 (0. 7&.4 314	rg B T /Overloc
204	2P531 Observation of synthesizing peptide of ribosome by high-speed AFM(52. Bio-imaging,Poster) Tj ETQq0 0 () rgBT /O\	verlock 10 Tf 5
205	2P534 Direct driving of the high-speed AFM cantilever by photo-thermal expansion toward vide-Rate imaging of Biomolecules(52. Bio-imaging,Poster Session,Abstract,Meeting Program of EABS & BSJ) Tj ETQq1	1 10007843	314orgBT /Ove
206	2P133 Actin gliding over myosin V S1 tethered on a glass surface at the head domain(Molecular) Tj ETQq0 0 0 rg	gBT/Qverl	ock 10 Tf 50 4
207	1P037 Measurements of GroEL-GroES binding-release action by high speed AFM(Proteins-functions,Poster Presentations). Seibutsu Butsuri, 2007, 47, S32.	0.0	0
208	2P128 Myosin V S1 tethered at its head can propel actin filaments movement(Molecular motors,Poster) Tj ETQq	0 0 0 rgB ¹ 0.0	Г /Qverlock 10
209	3P289 A high-speed scanner and its active damping for high-speed AFM(Bioimaging,Poster) Tj ETQq1 1 0.78431	4 rgBT /O	verlock 10 Tf 3
210	3P290 Improvement of high-speed AFM scanner(Bioimaging,Poster Presentations). Seibutsu Butsuri, 2007, 47, S275.	0.0	0
211	2P042 Single-molecule observation of the binding and release of substrate proteins in the chaperonin GroEL by high-speed atomic force microscopy(Proteins-structure and structure-function) Tj ETQq1 1 0.784314 rg	gB Ɗ/O ver	loc b 10 Tf 50
212	2P134 Structural dynamics of acto-myosin V revealed by high-speed AFM(Molecular motors,Oral) Tj ETQq0 0 0 r	gBT /Over	lock 10 Tf 50 :
213	Intrapage crosstalk in one-beam holographic recording system using a blazed grating. , 2007, , .		0
214	Advanced monitoring method for copper interconnect process. , 2007, , .		0
215	1P101 Dynamic imaging of disassembling and recrystallization processes of bR 2D crystals by high-speed AFM(Membrane proteins,Poster Presentions). Seibutsu Butsuri, 2007, 47, S48.	0.0	0
216	2P129 Calcium regulation of Myosin V(Molecular motors,Poster Presentations). Seibutsu Butsuri, 2007, 47, S145.	0.0	0

#	Article	IF	CITATIONS
217	3P-084 Direct observation of Bacteriorhodopsin molecular interaction in purple membrane by high-speed AFM(The 46th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2008, 48, S140.	0.0	0
218	1P-045 High-speed AFM visualization of substrate-protein binding to and release from chaperonin GroEL(The 46th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2008, 48, S27-S28.	0.0	0
219	1P-050 Single molecule observation of chaperonin GroEL-GroES interaction(The 46th Annual Meeting) Tj ETQq1 1	0.784314 0.0	1 rgBT /Over
220	1P-136 Detailed analysis of actomyosin V motion visualized by high-speed atomic force microscopy(The) Tj ETQqC	0 0 0 rgBT	Overlock 10
221	1P-166 Association Manner of Actin-Myosin V Depending on the Chemical States(The 46th Annual) Tj ETQq1 1 0.	784314 rg 0.0	gBT /Overloc
222	1P-256 2D crystal structures of bacteriorhodopsin mutants observed by high-speed atomic force microscopy(The 46th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2008, 48, S61.	0.0	0
223	1P-316 Speeding up the high-speed AFM by improving the scanner(The 46th Annual Meeting of the) Tj ETQq1 1 0	.784314 r 0.0	gBT /Overloo
224	3P-256 Visualization of subsurface structures by high-speed ultrasonic force microscopy(Bioimaging,The 47th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2009, 49, S194.	0.0	0
225	2P-025 Direct observation of GroEL-substrate complexes by high-speed atomic force microscopy(Protein:Structure & amp; Function,The 47th Annual Meeting of the Biophysical Society of) Tj ETQq1 1	007884314	lngBT ∕Overl
226	2P-274 Development of tip-scan type of high-speed AFM for cell imaging(Bioengineering,The 47th Annual) Tj ETQ	q0,0,0 rgB 0.0	T /Overlock
227	3P-257 Enhancement of detection sensitivity of tip-sample interaction in high-speed AFM(Bioimaging,The) Tj ETQ	q110.784	1314 rgBT 0
228	3TP3-06 Streptavidin 2D crystals as solid supports for the visualization of biomolecular processes by high-speed AFM(The 47th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2009, 49, S62.	0.0	0
229	2SE1500 Visualization of dynamic molecular processes in photoactivated Bacteriorhodopsin by high-speed AFM(2SE Overviewing Multilateral Approaches to Rhodopsin Systems,The 48th Annual) Tj ETQq1 1 0.7	7 &40 14 rg	Bō /Overloci
230	1P036 Role of the chaperonin GroES in the folding of substrate proteins(Protein:Structure &) Tj ETQq0 0 0 rg	gBT /Overlo 0.0	ock 10 Tf 50
231	2P279 1A1520 Role of aromatic residue for inter-molecular interaction between bacteriorhodopsin trimer studied by high-speed AFM(The 48th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2010, 50, S132.	0.0	0
232	2P325 Single molecular observations of processive glycosidases by high-speed atomic force microscopy(The 48th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2010, 50, S140.	0.0	0
233	2P093 Observation of the phosphorylated intrinsically disordered region of FACT with high-speed AFM(The 48th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2010, 50, S98.	0.0	0
234	2P094 Direct visualization of intrinsically disordered proteins PQBP-1 and FliK using high-speed atomic force microscopy(The 48th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2010, 50, S98.	0.0	0

Тозніо Андо

#	Article	IF	CITATIONS
235	3P170 Nano-dissection of the head of Chlamydomonas dynein-c using high-speed AFM(Molecular) Tj ETQq1 1 0.3	784314 rg 0.0	BT /Overlock 0
236	1P177 Observation of conformational change of β subunit in α_3β_3 subcomplex of F_1-ATPase by high-speed AFM(Molecular motor,The 48th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2010, 50, S50.	0.0	0
237	Biology and Nanotechnology. Hyomen Kagaku, 2010, 31, 373-373.	0.0	Ο
238	Direct Visualization of Walking Myosin V Molecules by High-Speed AFM. Biophysical Journal, 2011, 100, 3a.	0.2	0
239	3K1322 Live cell surface imaging of magnetic bacteria at molecular resolution by high speed AFM(Cell) Tj ETQq1 S145-S146.	1 0.78431 0.0	.4 rgBT /Over 0
240	3PS016 Development of "hopping-mode" high speed atomic force microscopy (AFM)(The 50th Annual) Tj ETQq0	0 0.cgBT /	Oyerlock 10
241	3F1058 OBSERVATION OF TRANSMEMBRANE PROTEIN BY HIGH SPEED ATOMIC FORCE MICROSCOPY : BACTERIORHODOPSIN D85S MUTANT, A CHLORIDE PUMP(Membrane Proteins,Oral Presentation). Seibutsu Butsuri, 2012, 52, S67.	0.0	0
242	2G1534 Single molecular observation of CFTR channels by high speed AFM(Biological & Artificial) Tj ETQq0 (Butsuri, 2012, 52, S51.	0 rgBT /0 0.0	Overlock 10 T 0
243	Direct Visualization of Cellobiohydrolase on Crystalline Cellulose using High-Speed Atomic Force Microscopy. Biophysical Journal, 2012, 102, 585a-586a.	0.2	0
244	Direct Observation of Rotary Catalysis of Rotorless F1-ATPase by High-Speed Atomic Force Microscopy. Biophysical Journal, 2012, 102, 600a.	0.2	0
245	Antibody Movement on Regular Antigen Clusters: Fab Arms are made for Walking. Biophysical Journal, 2013, 104, 381a.	0.2	0
246	Real-Time Visualization of a Pore-Forming Toxin Assembling on a Model Membrane. Biophysical Journal, 2013, 104, 360a.	0.2	0
247	1P305 Combined system of High-speed-AFM and optical microscopy(27. Bioimaging,Poster). Seibutsu Butsuri, 2013, 53, S156.	0.0	0
248	1P157 High-Speed-AFM Observation of Processive Movement of Cytoplasmic Dynein(11.Molecular) Tj ETQq0 0 C S131.	rgBT /Ove 0.0	erlock 10 Tf 5 0
249	Assembling of a Pore-Forming Toxin on a Model Membrane. Biophysical Journal, 2014, 106, 97a.	0.2	0
250	Video Imaging of Cofilin-Induced Actin Filament Severing by High Speed AFM. Biophysical Journal, 2014, 106, 163a.	0.2	0
251	Structural and Functional Analyses of IDPs by High-Speed AFM Imaging. Biophysical Journal, 2016, 110, 3a.	0.2	0
252	Visualization of Living Cells by High-speed Atomic Force Microscopy. Seibutsu Butsuri, 2016, 56, 159-161.	0.0	0

TOSHIO ANDO

#	Article	IF	CITATIONS
253	Nano-Space Video Imaging Reveals Structural Dynamics of Fibrous Protein Assembly and Relevant Enzymes. Biophysical Journal, 2017, 112, 469a.	0.2	Ο
254	High-Speed Atomic Force Microscopy (AFM). , 2018, , 1-7.		0
255	Dynamic Observation of Kai Proteins by HS-AFM Reveals a Mechanism of the Robustness in the Cyanobacterial Circadian Oscillator. Biophysical Journal, 2018, 114, 68a.	0.2	0
256	10.1063/5.0032948.3., 2021, , .		0
257	10.1063/5.0032948.6. , 2021, , .		0
258	10.1063/5.0032948.1., 2021, , .		0
259	10.1063/5.0032948.10. , 2021, , .		0
260	Gene Resources in the Genus <i>Petunia</i> (Solanaceae). Horticultural Research (Japan), 2002, 1, 213-218.	0.1	0
261	High-Speed SPM. Nanoscience and Technology, 2007, , 109-116.	1.5	0
262	Video-rate High-speed Atomic Force Microscopy for Biological Sciences. Journal of the Vacuum Society of Japan, 2008, 51, 783-788.	0.3	0
263	2P-192 Movement of pseudo-HMM without lever arms(The 46th Annual Meeting of the Biophysical) Tj ETQq1 1	0.784314	rgBT /Overlo
264	Techniques Developed for High-Speed AFM. Lecture Notes in Control and Information Sciences, 2011, , 1-16.	0.6	0
265	High-Speed Atomic Force Microscopy for Dynamic Biological Imaging. , 2011, , 163-184.		0
266	Nanovisualization of Proteins in Action Using High-Speed AFM. , 2012, , 119-147.		0
267	Real Time Single Molecular Imaging of Enzymatic Degradation of Crystalline Cellulose by High-speed Atomic Force Microscopy. Seibutsu Butsuri, 2013, 53, 140-144.	0.0	0
268	2-3 Bioimaging by High-speed Atomic Force Microscopy. Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers, 2013, 67, 753-759.	0.0	0
269	Development and Application of Atomic Force Microscope with Integrated Fluoresence Microscope Seibutsu Butsuri, 1995, 35, 116-118.	0.0	0
270	10.1063/5.0067224.1., 2021, , .		0

#	Article	IF	CITATIONS
271	10.1063/5.0072722.1., 2022, , .		0
272	Membrane-Remodeling Proteins. Nanoscience and Technology, 2022, , 183-200.	1.5	0