Simona Rossi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/18299/publications.pdf

Version: 2024-02-01

686830 839053 20 675 13 18 h-index citations g-index papers 22 22 22 1342 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	The NADPH Oxidase Pathway Is Dysregulated by the P2X7 Receptor in the SOD1-G93A Microglia Model of Amyotrophic Lateral Sclerosis. Journal of Immunology, 2013, 190, 5187-5195.	0.4	103
2	Nuclear accumulation of mRNAs underlies G4C2 repeat-induced translational repression in a cellular model of <i>C9orf72</i> ALS. Journal of Cell Science, 2015, 128, 1787-99.	1.2	96
3	Skeletal-Muscle Metabolic Reprogramming in ALS-SOD1G93A Mice Predates Disease Onset and Is A Promising Therapeutic Target. IScience, 2020, 23, 101087.	1.9	55
4	Tissue-specific deregulation of selected HDACs characterizes ALS progression in mouse models: pharmacological characterization of SIRT1 and SIRT2 pathways. Cell Death and Disease, 2014, 5, e1296-e1296.	2.7	45
5	Old <i>versus</i> New Mechanisms in the Pathogenesis of ALS. Brain Pathology, 2016, 26, 276-286.	2.1	45
6	Mitochondrial dynamism and the pathogenesis of Amyotrophic Lateral Sclerosis. Frontiers in Cellular Neuroscience, 2015, 9, 31.	1.8	44
7	Control of mRNA Translation in ALS Proteinopathy. Frontiers in Molecular Neuroscience, 2017, 10, 85.	1.4	40
8	Differential toxicity of TAR DNAâ€binding protein 43 isoforms depends on their submitochondrial localization in neuronal cells. Journal of Neurochemistry, 2018, 146, 585-597.	2.1	39
9	Rac1 at the crossroad of actin dynamics and neuroinflammation in Amyotrophic Lateral Sclerosis. Frontiers in Cellular Neuroscience, 2014, 8, 279.	1.8	38
10	Targeting the Wnt/ \hat{l}^2 -catenin pathway in neurodegenerative diseases: recent approaches and current challenges. Expert Opinion on Drug Discovery, 2020, 15, 803-822.	2 . 5	37
11	Structural insights into the multi-determinant aggregation of TDP-43 in motor neuron-like cells. Neurobiology of Disease, 2016, 94, 63-72.	2.1	29
12	Functional interaction between FUS and SMN underlies SMA-like splicing changes in wild-type hFUS mice. Scientific Reports, 2017, 7, 2033.	1.6	27
13	The S100A4 Transcriptional Inhibitor Niclosamide Reduces Pro-Inflammatory and Migratory Phenotypes of Microglia: Implications for Amyotrophic Lateral Sclerosis. Cells, 2019, 8, 1261.	1.8	24
14	UsnRNP trafficking is regulated by stress granules and compromised by mutant ALS proteins. Neurobiology of Disease, 2020, 138, 104792.	2.1	15
15	Atrial Natriuretic Peptide Acts as a Neuroprotective Agent in in Vitro Models of Parkinson's Disease via Up-regulation of the Wnt/β-Catenin Pathway. Frontiers in Aging Neuroscience, 2018, 10, 20.	1.7	14
16	Targeting S100A4 with niclosamide attenuates inflammatory and profibrotic pathways in models of amyotrophic lateral sclerosis. Journal of Neuroinflammation, 2021, 18, 132.	3.1	11
17	Natriuretic peptides are neuroprotective on in vitro models of PD and promote dopaminergic differentiation of hiPSCs-derived neurons via the Wnt/β-catenin signaling. Cell Death Discovery, 2021, 7, 330.	2.0	7
18	Dysfunction of RNA/RNA-Binding Proteins in ALS Astrocytes and Microglia. Cells, 2021, 10, 3005.	1.8	6

#	Article	IF	CITATIONS
19	Translational repression in the pathogenesis of FUS- and C9orf72-dependent ALS. SpringerPlus, 2015, 4, L51.	1.2	0
20	Skeletal-Muscle Metabolic Reprogramming in ALS-SOD1 ^{G93G} Mice Predates Disease Onset and is a Promising Therapeutic Target. SSRN Electronic Journal, 0, , .	0.4	0