Jiawen Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1829735/publications.pdf

Version: 2024-02-01

218677 243625 2,026 71 26 44 citations h-index g-index papers 73 73 73 2170 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A Silkâ€Based Functionalization Architecture for Single Fiber Imaging and Sensing. Advanced Functional Materials, 2022, 32, 2010713.	14.9	6
2	Multimodality Intravascular Imaging of High-Risk Coronary Plaque. JACC: Cardiovascular Imaging, 2022, 15, 145-159.	5.3	35
3	Rapid Fabrication of 3D Chiral Microstructures by Single Exposure of Interfered Femtosecond Vortex Beams and Capillaryâ€Forceâ€Assisted Selfâ€Assembly. Advanced Functional Materials, 2022, 32, 2106917.	14.9	17
4	Sustaining Robust Cavities with Slippery Liquid–Liquid Interfaces. Advanced Science, 2022, 9, e2103568.	11.2	8
5	A Handheld Fiber-Optic Probe to Enable Optical Coherence Tomography of Oral Soft Tissue. IEEE Transactions on Biomedical Engineering, 2022, 69, 2276-2282.	4.2	5
6	Double-Clad Fiber-Based Multifunctional Biosensors and Multimodal Bioimaging Systems: Technology and Applications. Biosensors, 2022, 12, 90.	4.7	4
7	3Dâ€Printed Micro Lensâ€inâ€Lens for In Vivo Multimodal Microendoscopy. Small, 2022, 18, e2107032.	10.0	21
8	3Dâ€Printed Micro Lensâ€inâ€Lens for In Vivo Multimodal Microendoscopy (Small 17/2022). Small, 2022, 18, .	10.0	0
9	Automated Coronary Optical Coherence Tomography Feature Extraction with Application to Three-Dimensional Reconstruction. Tomography, 2022, 8, 1307-1349.	1.8	7
10	Functional Shape-Morphing Microarchitectures Fabricated by Dynamic Holographically Shifted Femtosecond Multifoci. Nano Letters, 2022, 22, 5277-5286.	9.1	16
11	Multimodal imaging needle combining optical coherence tomography and fluorescence for imaging of live breast cancer cells labeled with a fluorescent analog of tamoxifen. Journal of Biomedical Optics, 2022, 27, .	2.6	0
12	Precise on-Fiber Plasmonic Spectroscopy Using a Gradient-Index Microlens. Journal of Lightwave Technology, 2021, 39, 270-274.	4.6	0
13	Transparent Lightâ€Driven Hydrogel Actuator Based on Photothermal Marangoni Effect and Buoyancy Flow for Threeâ€Dimensional Motion. Advanced Functional Materials, 2021, 31, 2009386.	14.9	48
14	Protein detection enabled using functionalised silk-binding peptides on a silk-coated optical fibre. RSC Advances, 2021, 11, 22334-22342.	3.6	1
15	Two-dimensional mapping of surface scatterers on an optical fiber core using selective mode launching. APL Photonics, 2021, 6, 026105.	5.7	1
16	Whispering gallery mode excitation using exposed-core fiber. Optics Express, 2021, 29, 23549.	3.4	8
17	Quasi-phase-matching-division multiplexing holography in a three-dimensional nonlinear photonic crystal. Light: Science and Applications, 2021, 10, 146.	16.6	42
18	Femtosecond laser direct writing continuous phase vortex gratings with proportionally distributed diffraction energy. Applied Physics Letters, $2021, 119, \ldots$	3.3	1

#	Article	IF	Citations
19	Environmentally Adaptive Shape-Morphing Microrobots for Localized Cancer Cell Treatment. ACS Nano, 2021, 15, 18048-18059.	14.6	94
20	Femtosecond Laser Regulated Ultrafast Growth of Mushroom-Like Architecture for Oil Repellency and Manipulation. Nano Letters, 2021, 21, 9301-9309.	9.1	22
21	Single-fiber-based probe for combined imaging and pH sensing. , 2021, , .		0
22	Botanicalâ€Inspired 4D Printing of Hydrogel at the Microscale. Advanced Functional Materials, 2020, 30, 1907377.	14.9	122
23	Distributed optical fiber sensing of micron-scale particles. Sensors and Actuators A: Physical, 2020, 303, 111762.	4.1	9
24	Ultrathin monolithic 3D printed optical coherence tomography endoscopy for preclinical and clinical use. Light: Science and Applications, 2020, 9, 124.	16.6	80
25	Chiral Microstructures: Chiral Assemblies of Laserâ€Printed Micropillars Directed by Asymmetrical Capillary Force (Adv. Mater. 31/2020). Advanced Materials, 2020, 32, 2070236.	21.0	0
26	Chiral Assemblies of Laserâ€Printed Micropillars Directed by Asymmetrical Capillary Force. Advanced Materials, 2020, 32, e2002356.	21.0	42
27	Silk: A bio-derived coating for optical fiber sensing applications. Sensors and Actuators B: Chemical, 2020, 311, 127864.	7.8	24
28	4D Printing: Botanicalâ€Inspired 4D Printing of Hydrogel at the Microscale (Adv. Funct. Mater. 4/2020). Advanced Functional Materials, 2020, 30, 2070026.	14.9	2
29	The Integration of IVUS and OCT. , 2020, , 57-79.		1
30	Co-located sensing and imaging via a single fibre [Invited]. , 2020, , .		0
31	Remote Photothermal Actuation of Underwater Bubble toward Arbitrary Direction on Planar Slippery Fe ₃ O ₄ â€Doped Surfaces. Advanced Functional Materials, 2019, 29, 1904766.	14.9	59
32	Targeted Singleâ€Cell Therapeutics with Magnetic Tubular Micromotor by Oneâ€Step Exposure of Structured Femtosecond Optical Vortices. Advanced Functional Materials, 2019, 29, 1905745.	14.9	54
33	Multifunctional Janus Microplates Arrays Actuated by Magnetic Fields for Water/Light Switches and Bioâ€Inspired Assimilatory Coloration. Advanced Materials, 2019, 31, e1807507.	21.0	144
34	Conical Hollow Microhelices with Superior Swimming Capabilities for Targeted Cargo Delivery. Advanced Materials, 2019, 31, e1808226.	21.0	89
35	Femtosecond Mathieu Beams for Rapid Controllable Fabrication of Complex Microcages and Application in Trapping Microobjects. ACS Nano, 2019, 13, 4667-4676.	14.6	63
36	Imaging Genetically-Modified Cells with a Miniaturised Multimodal Optical Coherence Tomography + Fluorescence Probe. , 2019 , , .		0

#	Article	IF	CITATIONS
37	Novel concepts for sensing, imaging and mode generation in fibers using high-index glass., 2019,,.		O
38	Chemical sensing based on silk coated exposed-core fibers. , 2019, , .		0
39	Intraoperative detection of blood vessels with an imaging needle during neurosurgery in humans. Science Advances, 2018, 4, eaav4992.	10.3	46
40	Two-photon polymerisation 3D printed freeform micro-optics for optical coherence tomography fibre probes. Scientific Reports, 2018, 8, 14789.	3.3	50
41	Perspective: Biomedical sensing and imaging with optical fibersâ€"Innovation through convergence of science disciplines. APL Photonics, 2018, 3, .	5.7	31
42	Miniaturized single-fiber-based needle probe for combined imaging and sensing in deep tissue. Optics Letters, 2018, 43, 1682.	3.3	27
43	Imaging-aided Temperature Measurements with a Single Optical Fiber for in-vivo Sensing Applications. , 2018, , .		O
44	HYBRID IVUS/OCT: "PROBING―THE FUTURE. Journal of the American College of Cardiology, 2017, 69, 976.	2.8	0
45	Flexible needle with integrated optical coherence tomography probe for imaging during transbronchial tissue aspiration. Journal of Biomedical Optics, 2017, 22, 1.	2.6	13
46	High speed photoacoustic imaging with fast OPO laser at 1.7 \hat{l} 4m (Conference Presentation). , 2016, , .		0
47	Ultrafast optical-ultrasonic system and miniaturized catheter for imaging and characterizing atherosclerotic plaques in vivo. Scientific Reports, 2015, 5, 18406.	3.3	43
48	High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 <i>μ</i> m. Applied Physics Letters, 2015, 107, 083701.	3.3	57
49	Multi-frequency intravascular ultrasound (IVUS) imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62, 97-107.	3.0	112
50	Ideal flushing agents for integrated optical acoustic imaging systems. , 2015, , .		0
51	Integrated OCT-US catheter for detection of cancer in the gastrointestinal tract. , 2015, , .		O
52	Optimal flushing agents for integrated optical and acoustic imaging systems. Journal of Biomedical Optics, 2015, 20, 056005.	2.6	10
53	Integrated intravascular ultrasound and optical coherence tomography technology: a promising tool to identify vulnerable plaques [INVITED PAPER]. Journal of Biomedical Photonics and Engineering, 2015, 1, 209-224.	0.7	2
54	Self optical motion-tracking for endoscopic optical coherence tomography probe using micro-beamsplitter probe. , 2014, , .		0

#	Article	IF	CITATIONS
55	Diagnostic accuracy of integrated intravascular ultrasound and optical coherence tomography (IVUS-OCT) system for coronary plaque characterization. Proceedings of SPIE, 2014, , .	0.8	1
56	Back-to-back optical coherence tomography-ultrasound probe for co-registered three-dimensional intravascular imaging with real-time display. Proceedings of SPIE, 2014, , .	0.8	0
57	Trimodality imaging system and intravascular endoscopic probe: combined optical coherence tomography, fluorescence imaging and ultrasound imaging. Optics Letters, 2014, 39, 6652.	3.3	33
58	Integrated IVUS-OCT Imaging for Atherosclerotic Plaque Characterization. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 196-203.	2.9	53
59	Integrated IVUS-OCT for Real-Time Imaging of Coronary Atherosclerosis. JACC: Cardiovascular Imaging, 2014, 7, 101-103.	5.3	51
60	TCT-380 Integrated intravascular ultrasound (IVUS) optical coherence tomography (OCT) system for identifying thin-cap fibroatheroma. Journal of the American College of Cardiology, 2014, 64, B111.	2.8	0
61	Miniature optical coherence tomography-ultrasound probe for automatically coregistered three-dimensional intracoronary imaging with real-time display. Journal of Biomedical Optics, 2013, 18, 1.	2.6	39
62	Resonant acoustic radiation force optical coherence elastography. Applied Physics Letters, 2013, 103, 103704.	3.3	56
63	Real-time co-registered IVUS-OCT catheter for atherosclerotic plaque identification. , 2013, , .		2
64	Integrated IVUS-OCT catheter for in vivo intravascular imaging. , 2012, , .		1
65	Advances in a fully integrated intravascular OCT-ultrasound system for cardiovascular imaging. , 2012, , .		1
66	Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner. Journal of Biomedical Optics, 2012, 17, 0705011.	2.6	54
67	Miniature integrated optical coherence tomography (OCT) - ultrasound (US) probe for intravascular imaging. Proceedings of SPIE, 2012, , .	0.8	1
68	Integrated intravascular optical coherence tomography (OCT) - ultrasound (US) catheter for characterization of atherosclerotic plaques in vivo. , 2012, 2012, 3175-8.		2
69	Novel combined miniature optical coherence tomography ultrasound probe for in vivo intravascular imaging. Journal of Biomedical Optics, 2011, 16, 060505.	2.6	69
70	Transit-time analysis based on delay-encoded beam shape for velocity vector quantification by spectral-domain Doppler optical coherence tomography. Optics Express, 2010, 18, 1261.	3.4	12
71	Micro lens fabrication by means of femtosecond two photon photopolymerization. Optics Express, 2006, 14, 810.	3.4	232