Wei Tao

List of Publications by Citations

Source: https://exaly.com/author-pdf/1829701/wei-tao-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

133	11,285	55	105
papers	citations	h-index	g-index
150	14,702	15.8	6.79
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
133	Cellular uptake of nanoparticles: journey inside the cell. <i>Chemical Society Reviews</i> , 2017 , 46, 4218-4244	58.5	1045
132	Progress and challenges towards targeted delivery of cancer therapeutics. <i>Nature Communications</i> , 2018 , 9, 1410	17.4	976
131	Black Phosphorus Nanosheets as a Robust Delivery Platform for Cancer Theranostics. <i>Advanced Materials</i> , 2017 , 29, 1603276	24	546
130	Antimonene Quantum Dots: Synthesis and Application as Near-Infrared Photothermal Agents for Effective Cancer Therapy. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 11896-11900	16.4	391
129	Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. <i>Chemical Society Reviews</i> , 2019 , 48, 2891-2912	58.5	345
128	Polydopamine-Modified Black Phosphorous Nanocapsule with Enhanced Stability and Photothermal Performance for Tumor Multimodal Treatments. <i>Advanced Science</i> , 2018 , 5, 1800510	13.6	303
127	ROS-Responsive Polyprodrug Nanoparticles for Triggered Drug Delivery and Effective Cancer Therapy. <i>Advanced Materials</i> , 2017 , 29, 1700141	24	281
126	Two-Dimensional Antimonene-Based Photonic Nanomedicine for Cancer Theranostics. <i>Advanced Materials</i> , 2018 , 30, e1802061	24	260
125	A Novel Top-Down Synthesis of Ultrathin 2D Boron Nanosheets for Multimodal Imaging-Guided Cancer Therapy. <i>Advanced Materials</i> , 2018 , 30, e1803031	24	254
124	Cholic acid-functionalized nanoparticles of star-shaped PLGA-vitamin E TPGS copolymer for docetaxel delivery to cervical cancer. <i>Biomaterials</i> , 2013 , 34, 6058-67	15.6	227
123	TiL -Coordinated Black Phosphorus Quantum Dots as an Efficient Contrast Agent for In Vivo Photoacoustic Imaging of Cancer. <i>Small</i> , 2017 , 13, 1602896	11	198
122	Docetaxel (DTX)-loaded polydopamine-modified TPGS-PLA nanoparticles as a targeted drug delivery system for the treatment of liver cancer. <i>Acta Biomaterialia</i> , 2016 , 30, 144-154	10.8	195
121	A Drug-Self-Gated Mesoporous Antitumor Nanoplatform Based on pH-Sensitive Dynamic Covalent Bond. <i>Advanced Functional Materials</i> , 2017 , 27, 1605985	15.6	175
120	A Multifunctional Nanoplatform against Multidrug Resistant Cancer: Merging the Best of Targeted Chemo/Gene/Photothermal Therapy. <i>Advanced Functional Materials</i> , 2017 , 27, 1704135	15.6	173
119	Polydopamine-based surface modification of mesoporous silica nanoparticles as pH-sensitive drug delivery vehicles for cancer therapy. <i>Journal of Colloid and Interface Science</i> , 2016 , 463, 279-87	9.3	161
118	Polydopamine-Based Surface Modification of Novel Nanoparticle-Aptamer Bioconjugates for In Vivo Breast Cancer Targeting and Enhanced Therapeutic Effects. <i>Theranostics</i> , 2016 , 6, 470-84	12.1	153
117	TPGS-Functionalized Polydopamine-Modified Mesoporous Silica as Drug Nanocarriers for Enhanced Lung Cancer Chemotherapy against Multidrug Resistance. <i>Small</i> , 2017 , 13, 1700623	11	149

116	Intracellular Mechanistic Understanding of 2D MoS Nanosheets for Anti-Exocytosis-Enhanced Synergistic Cancer Therapy. <i>ACS Nano</i> , 2018 , 12, 2922-2938	16.7	145
115	Multifunctional Envelope-Type siRNA Delivery Nanoparticle Platform for Prostate Cancer Therapy. <i>ACS Nano</i> , 2017 , 11, 2618-2627	16.7	142
114	Long-circulating siRNA nanoparticles for validating Prohibitin1-targeted non-small cell lung cancer treatment. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 7779-84	11.5	137
113	The effect of autophagy inhibitors on drug delivery using biodegradable polymer nanoparticles in cancer treatment. <i>Biomaterials</i> , 2014 , 35, 1932-43	15.6	136
112	Glutathione-Responsive Prodrug Nanoparticles for Effective Drug Delivery and Cancer Therapy. <i>ACS Nano</i> , 2019 , 13, 357-370	16.7	134
111	Restoration of tumour-growth suppression in vivo via systemic nanoparticle-mediated delivery of PTEN mRNA. <i>Nature Biomedical Engineering</i> , 2018 , 2, 850-864	19	127
110	Glutathione-Scavenging Poly(disulfide amide) Nanoparticles for the Effective Delivery of Pt(IV) Prodrugs and Reversal of Cisplatin Resistance. <i>Nano Letters</i> , 2018 , 18, 4618-4625	11.5	123
109	A materials-science perspective on tackling COVID-19. <i>Nature Reviews Materials</i> , 2020 , 1-14	73-3	123
108	In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer treatment. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 28667-28677	11.5	123
107	Marriage of black phosphorus and Cu as effective photothermal agents for PET-guided combination cancer therapy. <i>Nature Communications</i> , 2020 , 11, 2778	17.4	121
106	Black phosphorus analogue tin sulfide nanosheets: synthesis and application as near-infrared photothermal agents and drug delivery platforms for cancer therapy. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 4747-4755	7.3	116
105	Challenges in DNA Delivery and Recent Advances in Multifunctional Polymeric DNA Delivery Systems. <i>Biomacromolecules</i> , 2017 , 18, 2231-2246	6.9	115
104	Germanene-Based Theranostic Materials for Surgical Adjuvant Treatment: Inhibiting Tumor Recurrence and Wound Infection. <i>Matter</i> , 2020 , 3, 127-144	12.7	112
103	Docetaxel-loaded nanoparticles based on star-shaped mannitol-core PLGA-TPGS diblock copolymer for breast cancer therapy. <i>Acta Biomaterialia</i> , 2013 , 9, 8910-20	10.8	106
102	Tumor Microenvironment-Responsive Multistaged Nanoplatform for Systemic RNAi and Cancer Therapy. <i>Nano Letters</i> , 2017 , 17, 4427-4435	11.5	104
101	Phosphorus Science-Oriented Design and Synthesis of Multifunctional Nanomaterials for Biomedical Applications. <i>Matter</i> , 2020 , 2, 297-322	12.7	104
100	Synthesis of Ultrathin Biotite Nanosheets as an Intelligent Theranostic Platform for Combination Cancer Therapy. <i>Advanced Science</i> , 2019 , 6, 1901211	13.6	99
99	Intracellular Fate of Nanoparticles with Polydopamine Surface Engineering and a Novel Strategy for Exocytosis-Inhibiting, Lysosome Impairment-Based Cancer Therapy. <i>Nano Letters</i> , 2017 , 17, 6790-680)11 ^{1.5}	98

98	ROS-Mediated Selective Killing Effect of Black Phosphorus: Mechanistic Understanding and Its Guidance for Safe Biomedical Applications. <i>Nano Letters</i> , 2020 , 20, 3943-3955	11.5	97
97	Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite for cancer theranostics. <i>Nature Communications</i> , 2021 , 12, 1124	17.4	97
96	Polymeric Nanoparticles Amenable to Simultaneous Installation of Exterior Targeting and Interior Therapeutic Proteins. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 3309-12	16.4	94
95	Synthetic mRNA nanoparticle-mediated restoration of p53 tumor suppressor sensitizes -deficient cancers to mTOR inhibition. <i>Science Translational Medicine</i> , 2019 , 11,	17.5	92
94	Enhanced Oral Delivery of Protein Drugs Using Zwitterion-Functionalized Nanoparticles to Overcome both the Diffusion and Absorption Barriers. <i>ACS Applied Materials & Diffusion and Absorption Barriers</i> . <i>ACS Applied Materials & Diffusion and Absorption Barriers</i> . <i>ACS Applied Materials & Diffusion and Absorption Barriers</i> . <i>ACS Applied Materials & Diffusion and Absorption Barriers</i> . <i>ACS Applied Materials & Diffusion and Absorption Barriers</i> . <i>ACS Applied Materials & Diffusion and Absorption Barriers</i> . <i>ACS Applied Materials & Diffusion and Absorption Barriers</i> . <i>ACS Applied Materials & Diffusion and Absorption Barriers</i> . <i>ACS Applied Materials & Diffusion and Absorption Barriers</i> . <i>ACS Applied Materials & Diffusion Barriers</i> . <i>ACS Applied Materials & Diffusion Barriers</i> .	9.5	90
93	Nanotechnology-Based Strategies for siRNA Brain Delivery for Disease Therapy. <i>Trends in Biotechnology</i> , 2018 , 36, 562-575	15.1	87
92	ROS-Responsive Polymeric siRNA Nanomedicine Stabilized by Triple Interactions for the Robust Glioblastoma Combinational RNAi Therapy. <i>Advanced Materials</i> , 2019 , 31, e1903277	24	86
91	Insights from nanotechnology in COVID-19 treatment. <i>Nano Today</i> , 2021 , 36, 101019	17.9	82
90	Iron Oxide Nanoparticles Induce Autophagosome Accumulation through Multiple Mechanisms: Lysosome Impairment, Mitochondrial Damage, and ER Stress. <i>Molecular Pharmaceutics</i> , 2016 , 13, 2578	-8 7 .6	80
89	Antimonene Quantum Dots: Synthesis and Application as Near-Infrared Photothermal Agents for Effective Cancer Therapy. <i>Angewandte Chemie</i> , 2017 , 129, 12058-12062	3.6	78
88	2D Monoelemental Germanene Quantum Dots: Synthesis as Robust Photothermal Agents for Photonic Cancer Nanomedicine. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 13405-13410	16.4	75
87	siRNA nanoparticles targeting CaMKIIIIn lesional macrophages improve atherosclerotic plaque stability in mice. <i>Science Translational Medicine</i> , 2020 , 12,	17.5	70
86	Stimuli-Responsive Polymer-Prodrug Hybrid Nanoplatform for Multistage siRNA Delivery and Combination Cancer Therapy. <i>Nano Letters</i> , 2019 , 19, 5967-5974	11.5	66
85	Engineering Halomonas species TD01 for enhanced polyhydroxyalkanoates synthesis via CRISPRi. <i>Microbial Cell Factories</i> , 2017 , 16, 48	6.4	64
84	Blended nanoparticle system based on miscible structurally similar polymers: a safe, simple, targeted, and surprisingly high efficiency vehicle for cancer therapy. <i>Advanced Healthcare Materials</i> , 2015 , 4, 1203-14	10.1	59
83	Ultrasound mediated therapy: Recent progress and challenges in nanoscience. <i>Nano Today</i> , 2020 , 35, 100949	17.9	58
82	Pnictogens in medicinal chemistry: evolution from erstwhile drugs to emerging layered photonic nanomedicine. <i>Chemical Society Reviews</i> , 2021 , 50, 2260-2279	58.5	58
81	Redox-Responsive Nanoparticle-Mediated Systemic RNAi for Effective Cancer Therapy. <i>Small</i> , 2018 , 14, e1802565	11	57

(2021-2014)

80	Enhancing therapeutic effects of docetaxel-loaded dendritic copolymer nanoparticles by co-treatment with autophagy inhibitor on breast cancer. <i>Theranostics</i> , 2014 , 4, 1085-95	12.1	56
79	Biologically modified nanoparticles as theranostic bionanomaterials. <i>Progress in Materials Science</i> , 2021 , 118, 100768	42.2	55
78	Charge Conversional Biomimetic Nanocomplexes as a Multifunctional Platform for Boosting Orthotopic Glioblastoma RNAi Therapy. <i>Nano Letters</i> , 2020 , 20, 1637-1646	11.5	54
77	Stanene-Based Nanosheets for Elemene Delivery and Ultrasound-Mediated Combination Cancer Therapy. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 7155-7164	16.4	53
76	Multifunctional Fibers to Shape Future Biomedical Devices. <i>Advanced Functional Materials</i> , 2019 , 29, 1902834	15.6	51
75	Docetaxel-Loaded Nanoparticles of Dendritic Amphiphilic Block Copolymer H40-PLA-b-TPGS for Cancer Treatment. <i>Particle and Particle Systems Characterization</i> , 2015 , 32, 112-122	3.1	51
74	Redox-responsive polyprodrug nanoparticles for targeted siRNA delivery and synergistic liver cancer therapy. <i>Biomaterials</i> , 2020 , 234, 119760	15.6	50
73	Stimuli-responsive prodrug-based cancer nanomedicine. <i>EBioMedicine</i> , 2020 , 56, 102821	8.8	50
72	Arsenene-mediated multiple independently targeted reactive oxygen species burst for cancer therapy. <i>Nature Communications</i> , 2021 , 12, 4777	17.4	50
71	Systematic investigation on the intracellular trafficking network of polymeric nanoparticles. <i>Nanoscale</i> , 2017 , 9, 3269-3282	7.7	49
70	Intracellular Trafficking Network of Protein Nanocapsules: Endocytosis, Exocytosis and Autophagy. <i>Theranostics</i> , 2016 , 6, 2099-2113	12.1	49
69	Surface De-PEGylation Controls Nanoparticle-Mediated siRNA Delivery and. <i>Theranostics</i> , 2017 , 7, 1990	-210012	47
68	An antimonene/Cp*Rh(phen)Cl/black phosphorus hybrid nanosheet-based Z-scheme artificial photosynthesis for enhanced photo/bio-catalytic CO2 reduction. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 323-333	13	46
67	Nanobuffering of pH-Responsive Polymers: A Known but Sometimes Overlooked Phenomenon and Its Biological Applications. <i>ACS Nano</i> , 2019 , 13, 4876-4882	16.7	45
66	Blood-brain barrier-penetrating siRNA nanomedicine for Alzheimer's disease therapy. <i>Science Advances</i> , 2020 , 6,	14.3	45
65	Nano-Bio Interactions in Cancer: From Therapeutics Delivery to Early Detection. <i>Accounts of Chemical Research</i> , 2021 , 54, 291-301	24.3	45
64	Phosphorylcholine-based stealthy nanocapsules enabling tumor microenvironment-responsive doxorubicin release for tumor suppression. <i>Theranostics</i> , 2017 , 7, 1192-1203	12.1	43
63	Adjuvant-pulsed mRNA vaccine nanoparticle for immunoprophylactic and therapeutic tumor suppression in mice. <i>Biomaterials</i> , 2021 , 266, 120431	15.6	42

62	Triangle-Shaped Tellurium Nanostars Potentiate Radiotherapy by Boosting Checkpoint Blockade Immunotherapy. <i>Matter</i> , 2020 , 3, 1725-1753	12.7	40
61	Ca-supplying black phosphorus-based scaffolds fabricated with microfluidic technology for osteogenesis. <i>Bioactive Materials</i> , 2021 , 6, 4053-4064	16.7	40
60	Co-delivery of docetaxel and bortezomib based on a targeting nanoplatform for enhancing cancer chemotherapy effects. <i>Drug Delivery</i> , 2017 , 24, 1124-1138	7	38
59	Synthesis of cholic acid-core poly(Eaprolactone-ran-lactide)-b-poly(ethylene glycol) 1000 random copolymer as a chemotherapeutic nanocarrier for liver cancer treatment. <i>Biomaterials Science</i> , 2014 , 2, 1262-1274	7.4	37
58	DACHPt-Loaded Unimolecular Micelles Based on Hydrophilic Dendritic Block Copolymers for Enhanced Therapy of Lung Cancer. <i>ACS Applied Materials & Description of Communication (Communication)</i> 112-119	9.5	36
57	Enhanced adsorption of puerarin onto a novel hydrophilic and polar modified post-crosslinked resin from aqueous solution. <i>Journal of Colloid and Interface Science</i> , 2012 , 385, 166-73	9.3	35
56	Arsenene Nanodots with Selective Killing Effects and their Low-Dose Combination with Elemene for Cancer Therapy. <i>Advanced Materials</i> , 2021 , 33, e2102054	24	35
55	Robust aptamer-polydopamine-functionalized M-PLGA-TPGS nanoparticles for targeted delivery of docetaxel and enhanced cervical cancer therapy. <i>International Journal of Nanomedicine</i> , 2016 , 11, 2953-	6 75 ³	32
54	Porphyrin/SiO2/Cp*Rh(bpy)Cl Hybrid Nanoparticles Mimicking Chloroplast with Enhanced Electronic Energy Transfer for Biocatalyzed Artificial Photosynthesis. <i>Advanced Functional Materials</i> , 2018 , 28, 1705083	15.6	31
53	Drug Delivery Strategies for the Treatment of Metabolic Diseases. <i>Advanced Healthcare Materials</i> , 2019 , 8, e1801655	10.1	30
52	Black Phosphorus in Biological Applications: Evolutionary Journey from Monoelemental Materials to Composite Materials. <i>Accounts of Materials Research</i> , 2021 , 2, 489-500	7.5	30
51	2D Monoelemental Germanene Quantum Dots: Synthesis as Robust Photothermal Agents for Photonic Cancer Nanomedicine. <i>Angewandte Chemie</i> , 2019 , 131, 13539-13544	3.6	29
50	Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis. <i>Nature Reviews Cardiology</i> , 2021 ,	14.8	29
49	Novel Simvastatin-Loaded Nanoparticles Based on Cholic Acid-Core Star-Shaped PLGA for Breast Cancer Treatment. <i>Journal of Biomedical Nanotechnology</i> , 2015 , 11, 1247-60	4	28
48	Doxorubicin-loaded star-shaped copolymer PLGA-vitamin E TPGS nanoparticles for lung cancer therapy. <i>Journal of Materials Science: Materials in Medicine</i> , 2015 , 26, 165	4.5	27
47	Investigation and intervention of autophagy to guide cancer treatment with nanogels. <i>Nanoscale</i> , 2017 , 9, 150-163	7.7	27
46	DTX-loaded star-shaped TAPP-PLA-b-TPGS nanoparticles for cancer chemical and photodynamic combination therapy. <i>RSC Advances</i> , 2015 , 5, 50617-50627	3.7	27
45	Oral Insulin Delivery Platforms: Strategies To Address the Biological Barriers. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 19787-19795	16.4	25

(2021-2021)

44	Nanoscale porous organic polymers for drug delivery and advanced cancer theranostics. <i>Chemical Society Reviews</i> , 2021 , 50, 12883-12896	58.5	23
43	Cryogenic Exfoliation of 2D Stanene Nanosheets for Cancer Theranostics. <i>Nano-Micro Letters</i> , 2021 , 13, 90	19.5	22
42	Dual Hypoxia-Targeting RNAi Nanomedicine for Precision Cancer Therapy. <i>Nano Letters</i> , 2020 , 20, 4857-	-4863	20
41	Biomaterials and nanomedicine for bone regeneration: Progress and future prospects. <i>Exploration</i> , 2021 , 1, 20210011		20
40	Visualization of human T lymphocyte-mediated eradication of cancer cells in vivo. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 22910-22919	11.5	19
39	Efferocytosis induces macrophage proliferation to help resolve tissue injury. <i>Cell Metabolism</i> , 2021 , 33, 2445-2463.e8	24.6	15
38	Tailoring Aggregation Extent of Photosensitizer to Boost Phototherapy Potency for Eliciting Systemic Antitumor Immunity. <i>Advanced Materials</i> , 2021 , e2106390	24	13
37	From mouse to mouse-ear cress: Nanomaterials as vehicles in plant biotechnology. <i>Exploration</i> , 2021 , 1, 9-20		13
36	Biomedical applications of 2D monoelemental materials formed by group VA and VIA: a concise review. <i>Journal of Nanobiotechnology</i> , 2021 , 19, 96	9.4	12
35	Advancing the Pharmaceutical Potential of Bioinorganic Hybrid Lipid-Based Assemblies. <i>Advanced Science</i> , 2018 , 5, 1800564	13.6	10
34	One-step and facile synthesis of peptide-like poly(melphalan) nanodrug for cancer therapy. <i>Nano Today</i> , 2021 , 37, 101098	17.9	10
33	Comprehensive insights into intracellular fate of WS2 nanosheets for enhanced photothermal therapeutic outcomes via exocytosis inhibition. <i>Nanophotonics</i> , 2019 , 8, 2331-2346	6.3	10
32	Black Phosphorus: Black Phosphorus Nanosheets as a Robust Delivery Platform for Cancer Theranostics (Adv. Mater. 1/2017). <i>Advanced Materials</i> , 2017 , 29,	24	9
31	Intravesical delivery of -mRNA via mucoadhesive nanoparticles inhibits the metastasis of bladder cancer <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119,	11.5	9
30	Orally deliverable strategy based on microalgal biomass for intestinal disease treatment. <i>Science Advances</i> , 2021 , 7, eabi9265	14.3	9
29	Nano-bio interfaces effect of two-dimensional nanomaterials and their applications in cancer immunotherapy <i>Acta Pharmaceutica Sinica B</i> , 2021 , 11, 3447-3464	15.5	9
28	Microalgae-based oral microcarriers for gut microbiota homeostasis and intestinal protection in cancer radiotherapy <i>Nature Communications</i> , 2022 , 13, 1413	17.4	9
27	ODC (Ornithine Decarboxylase)-Dependent Putrescine Synthesis Maintains MerTK (MER Tyrosine-Protein Kinase) Expression to Drive Resolution. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> 2021 41 e144-e159	9.4	8

26	Polyphenol-based hydrogels: Pyramid evolution from crosslinked structures to biomedical applications and the reverse design <i>Bioactive Materials</i> , 2022 , 17, 49-70	16.7	6
25	Synthesis of siRNA nanoparticles to silence plaque-destabilizing gene in atherosclerotic lesional macrophages <i>Nature Protocols</i> , 2022 ,	18.8	6
24	Interleukin-33 is a Novel Immunosuppressor that Protects Cancer Cells from TIL Killing by a Macrophage-Mediated Shedding Mechanism. <i>Advanced Science</i> , 2021 , 8, e2101029	13.6	6
23	Polymeric Nanoparticles Amenable to Simultaneous Installation of Exterior Targeting and Interior Therapeutic Proteins. <i>Angewandte Chemie</i> , 2016 , 128, 3370-3373	3.6	5
22	Docetaxel-loaded nanoparticles of dendrimer-like amphiphilic copolymer for cancer therapy. Journal of Controlled Release, 2015 , 213, e119	11.7	5
21	Intercalation-Driven Formation of siRNA Nanogels for Cancer Therapy. <i>Nano Letters</i> , 2021 , 21, 9706-97	14 1.5	5
20	Baicalin induces ferroptosis in bladder cancer cells by downregulating FTH1 <i>Acta Pharmaceutica Sinica B</i> , 2021 , 11, 4045-4054	15.5	5
19	Arsenene Nanodots with Selective Killing Effects and their Low-Dose Combination with Elemene for Cancer Therapy (Adv. Mater. 37/2021). <i>Advanced Materials</i> , 2021 , 33, 2170292	24	5
18	A facile and general method for synthesis of antibiotic-free protein-based hydrogel: Wound dressing for the eradication of drug-resistant bacteria and biofilms <i>Bioactive Materials</i> , 2022 , 18, 446-4	158 ^{.7}	5
17	Blood-brain barrier-penetrating single CRISPR-Cas9 nanocapsules for effective and safe glioblastoma gene therapy <i>Science Advances</i> , 2022 , 8, eabm8011	14.3	5
16	Non-Invasive Thermal Therapy for Tissue Engineering and Regenerative Medicine Small, 2022, e21077	0 5 1	5
15	Emerging vaccine nanotechnology: From defense against infection to sniping cancer <i>Acta Pharmaceutica Sinica B</i> , 2022 ,	15.5	4
14	Theranostic Nanomedicine in the NIR-II Window: Classification, Fabrication, and Biomedical Applications <i>Chemical Reviews</i> , 2022 , 122, 5405-5407	68.1	4
13	2D Materials-based Nanomedicine: From Discovery to Applications <i>Advanced Drug Delivery Reviews</i> , 2022 , 114268	18.5	4
12	Pharmaceutical Nanotechnology: Blended Nanoparticle System Based on Miscible Structurally Similar Polymers: A Safe, Simple, Targeted, and Surprisingly High Efficiency Vehicle for Cancer Therapy (Adv. Healthcare Mater. 8/2015). <i>Advanced Healthcare Materials</i> , 2015 , 4, 1260-1260	10.1	3
11	Plattformen fildie orale Insulinabgabe: Strategien zur Beseitigung der biologischen Barrieren. <i>Angewandte Chemie</i> , 2020 , 132, 19955-19964	3.6	3
10	Cancer Theranostics: Two-Dimensional Antimonene-Based Photonic Nanomedicine for Cancer Theranostics (Adv. Mater. 38/2018). <i>Advanced Materials</i> , 2018 , 30, 1870283	24	3
9	Cancer Theranostics: A Novel Top-Down Synthesis of Ultrathin 2D Boron Nanosheets for Multimodal Imaging-Guided Cancer Therapy (Adv. Mater. 36/2018). <i>Advanced Materials</i> , 2018 , 30, 18702	2 68	3

LIST OF PUBLICATIONS

8	Cancer Therapy: A Multifunctional Nanoplatform against Multidrug Resistant Cancer: Merging the Best of Targeted Chemo/Gene/Photothermal Therapy (Adv. Funct. Mater. 45/2017). <i>Advanced Functional Materials</i> , 2017 , 27,	15.6	2
7	RNA cancer nanomedicine: nanotechnology-mediated RNA therapy Nanoscale, 2022,	7.7	2
6	Engineered nanoparticles enable deep proteomics studies at scale by leveraging tunable nano-bio interactions <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119, e2106053119	11.5	2
5	Artificial Photosynthesis: Porphyrin/SiO2/Cp*Rh(bpy)Cl Hybrid Nanoparticles Mimicking Chloroplast with Enhanced Electronic Energy Transfer for Biocatalyzed Artificial Photosynthesis (Adv. Funct. Mater. 9/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870061	15.6	1
4	Nanobiomaterials for Cancer Therapy 2017 , 305-327		1
3	Rüktitelbild: Plattformen fildie orale Insulinabgabe: Strategien zur Beseitigung der biologischen Barrieren (Angew. Chem. 45/2020). <i>Angewandte Chemie</i> , 2020 , 132, 20424-20424	3.6	1
3			0