
V M De Oliveira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1829197/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A genomic catalog of Earth's microbiomes. Nature Biotechnology, 2021, 39, 499-509.	9.4	457
2	Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. Nature Microbiology, 2019, 4, 603-613.	5.9	187
3	Microbial diversity associated with algae, ascidians and sponges from the north coast of São Paulo state, Brazil. Microbiological Research, 2010, 165, 466-482.	2.5	137
4	The use of the carbon/nitrogen ratio and specific organic loading rate as tools for improving biohydrogen production in fixed-bed reactors. Biotechnology Reports (Amsterdam, Netherlands), 2015, 5, 46-54.	2.1	106
5	Analysis of the composition of bacterial communities in oil reservoirs from a southern offshore Brazilian basin. Antonie Van Leeuwenhoek, 2007, 91, 253-266.	0.7	85
6	Diversity analyses of microbial communities in petroleum samples from Brazilian oil fields. International Biodeterioration and Biodegradation, 2013, 81, 57-70.	1.9	84
7	New Hydrocarbon Degradation Pathways in the Microbial Metagenome from Brazilian Petroleum Reservoirs. PLoS ONE, 2014, 9, e90087.	1.1	83
8	Biodegradation and detoxification of -nitrophenol by Rhodococcus wratislaviensis. International Biodegradation, 2005, 55, 103-108.	1.9	81
9	Anthropogenic impact on mangrove sediments triggers differential responses in the heavy metals and antibiotic resistomes of microbial communities. Environmental Pollution, 2016, 216, 460-469.	3.7	80
10	Bioremediation potential of microorganisms derived from petroleum reservoirs. Marine Pollution Bulletin, 2014, 89, 191-200.	2.3	61
11	Land Use and Seasonal Effects on the Soil Microbiome of a Brazilian Dry Forest. Frontiers in Microbiology, 2019, 10, 648.	1.5	61
12	Exploring the potential of halophilic bacteria from oil terminal environments for biosurfactant production and hydrocarbon degradation under high-salinity conditions. International Biodeterioration and Biodegradation, 2018, 126, 231-242.	1.9	60
13	Heterotrophic nitrifying/aerobic denitrifying bacteria: Ammonium removal under different physical-chemical conditions and molecular characterization. Journal of Environmental Management, 2019, 248, 109294.	3.8	57
14	Phylogenetic and functional diversity of metagenomic libraries of phenol degrading sludge from petroleum refinery wastewater treatment system. AMB Express, 2012, 2, 18.	1.4	55
15	Screening and Production Study of Microbial Xylanase Producers from Brazilian Cerrado. Applied Biochemistry and Biotechnology, 2010, 161, 333-346.	1.4	53
16	Effect of salinity in heterotrophic nitrification/aerobic denitrification performed by acclimated microbiota from oil-produced water biological treatment system. International Biodeterioration and Biodegradation, 2018, 130, 1-7.	1.9	52
17	Bioaugmentation strategy employing a microbial consortium immobilized in chitosan beads for oil degradation in mesocosm scale. Marine Pollution Bulletin, 2016, 107, 107-117.	2.3	50
18	Hydrogen, alcohols and volatile fatty acids from the co-digestion of coffee waste (coffee pulp, husk,) Tj ETQq0 0	0 rgBT /O 3.8	verlock 10 Tf 5 50

Hydrogen Energy, 2019, 44, 21434-21450.

#	Article	IF	CITATIONS
19	Identification of Genes and Pathways Related to Phenol Degradation in Metagenomic Libraries from Petroleum Refinery Wastewater. PLoS ONE, 2013, 8, e61811.	1.1	47
20	Anaerobic co-digestion of commercial laundry wastewater and domestic sewage in a pilot-scale EGSB reactor: The influence of surfactant concentration on microbial diversity. International Biodeterioration and Biodegradation, 2018, 127, 77-86.	1.9	46
21	Isolation, biodegradation ability and molecular detection of hydrocarbon degrading bacteria in petroleum samples from a Brazilian offshore basin. Organic Geochemistry, 2009, 40, 574-588.	0.9	45
22	The Effect of Biomass Immobilization Support Material and Bed Porosity on Hydrogen Production in an Upflow Anaerobic Packed-Bed Bioreactor. Applied Biochemistry and Biotechnology, 2013, 170, 1348-1366.	1.4	45
23	Metagenomic analysis of the microbiome in three different bioreactor configurations applied to commercial laundry wastewater treatment. Science of the Total Environment, 2017, 587-588, 389-398.	3.9	45
24	Screening for hydrocarbon biodegraders in a metagenomic clone library derived from Brazilian petroleum reservoirs. Organic Geochemistry, 2010, 41, 675-681.	0.9	43
25	Microbial diversity of a fullâ€scale UASB reactor applied to poultry slaughterhouse wastewater treatment: integration of 16S rRNA gene amplicon and shotgun metagenomic sequencing. MicrobiologyOpen, 2017, 6, e00443.	1.2	43
26	Evaluation of the diversity of rhizobia in Brazilian agricultural soils cultivated with soybeans. Applied Soil Ecology, 1999, 13, 159-167.	2.1	42
27	Metagenomic Insights Into the Mechanisms for Biodegradation of Polycyclic Aromatic Hydrocarbons in the Oil Supply Chain. Frontiers in Microbiology, 2020, 11, 561506.	1.5	40
28	Evaluation of the microbial diversity in a horizontal-flow anaerobic immobilized biomass reactor treating linear alkylbenzene sulfonate. Biodegradation, 2008, 19, 375-385.	1.5	38
29	Actinobacteria from Antarctica as a source for anticancer discovery. Scientific Reports, 2020, 10, 13870.	1.6	38
30	Could petroleum biodegradation be a joint achievement of aerobic and anaerobic microrganisms in deep sea reservoirs?. AMB Express, 2011, 1, 47.	1.4	37
31	Microbial diversity in degraded and non-degraded petroleum samples and comparison across oil reservoirs at local and global scales. Extremophiles, 2017, 21, 211-229.	0.9	34
32	Optimization of key factors affecting hydrogen production from coffee waste using factorial design and metagenomic analysis of the microbial community. International Journal of Hydrogen Energy, 2020, 45, 4205-4222.	3.8	34
33	Treatment of linear alkylbenzene sulfonate in a horizontal anaerobic immobilized biomass reactor. Bioresource Technology, 2010, 101, 606-612.	4.8	33
34	Bacteria from Antarctic environments: diversity and detection of antimicrobial, antiproliferative, and antiparasitic activities. Polar Biology, 2018, 41, 1505-1519.	0.5	33
35	Comparative metatranscriptomic analysis of anaerobic digesters treating anionic surfactant contaminated wastewater. Science of the Total Environment, 2019, 649, 482-494.	3.9	33
36	Taxonomic and functional patterns across soil microbial communities of global biomes. Science of the Total Environment, 2017, 609, 1064-1074.	3.9	32

#	Article	IF	CITATIONS
37	Environmental change and predator diversity drive alpha and beta diversity in freshwater macro and microorganisms. Global Change Biology, 2018, 24, 3715-3728.	4.2	32
38	Chemical Characterization and Biotechnological Applicability of Pigments Isolated from Antarctic Bacteria. Marine Biotechnology, 2019, 21, 416-429.	1.1	31
39	Pigments from Antarctic bacteria and their biotechnological applications. Critical Reviews in Biotechnology, 2021, 41, 809-826.	5.1	31
40	Bacterial diversity characterization in petroleum samples from Brazilian reservoirs. Brazilian Journal of Microbiology, 2008, 39, 445-452.	0.8	30
41	Genomic and chemical insights into biosurfactant production by the mangrove-derived strain Bacillus safensis CCMA-560. Applied Microbiology and Biotechnology, 2015, 99, 3155-3167.	1.7	30
42	The potential for hydrocarbon biodegradation and production of extracellular polymeric substances by aerobic bacteria isolated from a Brazilian petroleum reservoir. World Journal of Microbiology and Biotechnology, 2011, 27, 1513-1518.	1.7	29
43	Production and Properties of a Surface-Active Lipopeptide Produced by a New Marine Brevibacterium luteolum Strain. Applied Biochemistry and Biotechnology, 2014, 174, 2245-2256.	1.4	29
44	In depth metagenomic analysis in contrasting oil wells reveals syntrophic bacterial and archaeal associations for oil biodegradation in petroleum reservoirs. Science of the Total Environment, 2020, 715, 136646.	3.9	28
45	Interaction of endophytic diazotrophic bacteria and Fusarium oxysporum f. sp. cubense on plantlets of banana â€~Maça'. Plant and Soil, 2007, 298, 47-56.	1.8	27
46	Warming weakens facilitative interactions between decomposers and detritivores, and modifies freshwater ecosystem functioning. Global Change Biology, 2018, 24, 3170-3186.	4.2	27
47	Laundry wastewater and domestic sewage pilot-scale anaerobic treatment: Microbial community resilience regarding sulfide production. Journal of Environmental Management, 2019, 251, 109495.	3.8	27
48	Isolation and characterization of alachlor-degrading actinomycetes from soil. Antonie Van Leeuwenhoek, 2005, 87, 81-89.	0.7	25
49	A ribosomal RNA gene intergenic spacer based PCR and DGCE fingerprinting method for the analysis of specific rhizobial communities in soil. Journal of Microbiological Methods, 2006, 64, 366-379.	0.7	25
50	Culturable bacterial diversity from a feed water of a reverse osmosis system, evaluation of biofilm formation and biocontrol using phages. World Journal of Microbiology and Biotechnology, 2014, 30, 2689-2700.	1.7	25
51	Ammonium removal from high-salinity oilfield-produced water: assessing the microbial community dynamics at increasing salt concentrations. Applied Microbiology and Biotechnology, 2017, 101, 859-870.	1.7	25
52	Microbial enhanced oil recovery using a biosurfactant produced by Bacillus safensis isolated from mangrove microbiota - Part I biosurfactant characterization and oil displacement test. Journal of Petroleum Science and Engineering, 2019, 180, 950-957.	2.1	25
53	Metagenomic analysis of autochthonous microbial biomass from banana waste: Screening design of factors that affect hydrogen production. Biomass and Bioenergy, 2020, 138, 105573.	2.9	24
54	Monitoring the Bacterial Community Dynamics in a Petroleum Refinery Wastewater Membrane Bioreactor Fed with a High Phenolic Load. Journal of Microbiology and Biotechnology, 2010, 20, 21-29.	0.9	24

#	Article	IF	CITATIONS
55	Discrimination ofRhizobium tropici and R. leguminosarumstrains by PCRâ€specific amplification of 16S–23S rDNA spacer region fragments and denaturing gradient gel electrophoresis (DGGE). Letters in Applied Microbiology, 1999, 28, 137-141.	1.0	23
56	Cultivation-independent methods applied to the microbial prospection of oil and gas in soil from a sedimentary basin in Brazil. AMB Express, 2011, 1, 35.	1.4	22
57	Correlation of soil microbial community responses to contamination with crude oil with and without chromium and copper. International Biodeterioration and Biodegradation, 2012, 70, 104-110.	1.9	21
58	Characterization of amylase produced by cold-adapted bacteria from Antarctic samples. Biocatalysis and Agricultural Biotechnology, 2020, 23, 101452.	1.5	21
59	Enzymatic routes to hydrogen and organic acids production from banana waste fermentation by autochthonous bacteria: Optimization of pH and temperature. International Journal of Hydrogen Energy, 2021, 46, 8454-8468.	3.8	21
60	Functional metagenomics of oil-impacted mangrove sediments reveals high abundance of hydrolases of biotechnological interest. World Journal of Microbiology and Biotechnology, 2017, 33, 141.	1.7	20
61	Taxonomic and functional diversity of the microbiome in a jet fuel contaminated site as revealed by combined application of in situ microcosms with metagenomic analysis. Science of the Total Environment, 2020, 708, 135152.	3.9	20
62	Microbial functional responses to long-term anthropogenic impact in mangrove soils. Ecotoxicology and Environmental Safety, 2018, 160, 231-239.	2.9	19
63	Hydrocarbon-associated substrates reveal promising fungi for poly (ethylene terephthalate) (PET) depolymerization. Brazilian Journal of Microbiology, 2019, 50, 633-648.	0.8	19
64	Detoxification of Atrazine by Endophytic Streptomyces sp. Isolated from Sugarcane and Detection of Nontoxic Metabolite. Bulletin of Environmental Contamination and Toxicology, 2015, 95, 803-809.	1.3	18
65	Identification of oxidoreductases from the petroleum Bacillus safensis strain. Biotechnology Reports (Amsterdam, Netherlands), 2015, 8, 152-159.	2.1	17
66	Compositional profile of α / βâ€hydrolase fold proteins in mangrove soil metagenomes: prevalence of epoxide hydrolases and haloalkane dehalogenases in oilâ€contaminated sites. Microbial Biotechnology, 2015, 8, 604-613.	2.0	17
67	Molecular diversity of fungal and bacterial communities in the marine sponge <i>Dragmacidon reticulatum</i> . Journal of Basic Microbiology, 2015, 55, 207-220.	1.8	17
68	The metagenomic landscape of xenobiotics biodegradation in mangrove sediments. Ecotoxicology and Environmental Safety, 2019, 179, 232-240.	2.9	17
69	Physicochemical characterization of Pseudomonas stutzeri UFV5 and analysis of its transcriptome under heterotrophic nitrification/aerobic denitrification pathway induction condition. Scientific Reports, 2020, 10, 2215.	1.6	17
70	Searching for monooxygenases and hydrolases in bacteria from an extreme environment. Applied Microbiology and Biotechnology, 2010, 87, 319-329.	1.7	16
71	Mangrove soil as a source for novel xylanase and amylase as determined by cultivation-dependent and cultivation-independent methods. Brazilian Journal of Microbiology, 2020, 51, 217-228.	0.8	16
72	Exploring the genetic potential of a fosmid metagenomic library from an oil-impacted mangrove sediment for metabolism of aromatic compounds. Ecotoxicology and Environmental Safety, 2020, 189, 109974.	2.9	16

#	Article	IF	CITATIONS
73	Potential of semiarid soil from Caatinga biome as a novel source for mining lignocellulose-degrading enzymes. FEMS Microbiology Ecology, 2017, 93, fiw248.	1.3	15
74	Unveiling resistome profiles in the sediments of an Antarctic volcanic island. Environmental Pollution, 2019, 255, 113240.	3.7	15
75	Anaerobic reactor applied to laundry wastewater treatment: Unveiling the microbial community by gene and genome-centric approaches. International Biodeterioration and Biodegradation, 2020, 149, 104916.	1.9	15
76	Marine associated microbial consortium applied to RBBR textile dye detoxification and decolorization: Combined approach and metatranscriptomic analysis. Chemosphere, 2021, 267, 129190.	4.2	15
77	Hydrogen and organic acid production from dark fermentation of cheese whey without buffers under mesophilic condition. Journal of Environmental Management, 2022, 304, 114253.	3.8	15
78	Molecular analysis of microbial diversity in corrosion samples from energy transmission towers. Biofouling, 2011, 27, 435-447.	0.8	13
79	A Novel Multifunctional β-N-Acetylhexosaminidase Revealed through Metagenomics of an Oil-Spilled Mangrove. Bioengineering, 2017, 4, 62.	1.6	13
80	New FeFe-hydrogenase genes identified in a metagenomic fosmid library from a municipal wastewater treatment plant as revealed by high-throughput sequencing. Research in Microbiology, 2015, 166, 9-19.	1.0	12
81	The influence of upflow velocity and hydraulic retention time changes on taxonomic and functional characterization in Fluidized Bed Reactor treating commercial laundry wastewater in co-digestion with domestic sewage. Biodegradation, 2020, 31, 73-89.	1.5	12
82	Relationship between cyclohexyl-alkanoic acids and the acidothermophilic bacterium Alicyclobacillus spp.: Evidence from Brazilian oils. Organic Geochemistry, 2005, 36, 1443-1453.	0.9	11
83	Diversity of aromatic hydroxylating dioxygenase genes in mangrove microbiome and their biogeographic patterns across global sites. MicrobiologyOpen, 2017, 6, e00490.	1.2	11
84	Integrated diversity analysis of the microbial community in a reverse osmosis system from a Brazilian oil refinery. Systematic and Applied Microbiology, 2018, 41, 473-486.	1.2	11
85	Reprint of: Screening for hydrocarbon biodegraders in a metagenomic clone library derived from Brazilian petroleum reservoirs. Organic Geochemistry, 2010, 41, 1067-1073.	0.9	10
86	Investigation of the FeFe-hydrogenase gene diversity combined with phylogenetic microbial community analysis of an anaerobic domestic sewage sludge. World Journal of Microbiology and Biotechnology, 2013, 29, 2003-2014.	1.7	10
87	Evaluation of bacterial diversity recovered from petroleum samples using different physical matrices. Brazilian Journal of Microbiology, 2016, 47, 712-723.	0.8	10
88	Pigments in an iridescent bacterium, Cellulophaga fucicola, isolated from Antarctica. Antonie Van Leeuwenhoek, 2019, 112, 479-490.	0.7	9
89	Dynamics of microbial stress responses driven by abiotic changes along a temporal gradient in Deception Island, Maritime Antarctica. Science of the Total Environment, 2021, 758, 143671.	3.9	9
90	Draft Genome Sequence of Bacillus pumilus CCMA-560, Isolated from an Oil-Contaminated Mangrove Swamp. Genome Announcements, 2013, 1, .	0.8	8

#	Article	IF	CITATIONS
91	Microbiome taxonomic and functional profiles of two domestic sewage treatment systems. Biodegradation, 2021, 32, 17-36.	1.5	7
92	Antimicrobial activity against Microcystis aeruginosa and degradation of microcystin-LR by bacteria isolated from Antarctica. Environmental Science and Pollution Research, 2021, 28, 52381-52391.	2.7	7
93	Extracellular hydrolytic enzymes produced by yeasts from Antarctic lichens. Anais Da Academia Brasileira De Ciencias, 2022, 94, e20210540.	0.3	7
94	Antarctic Fungi as Producers of Pigments. , 2019, , 305-318.		6
95	Antarctic lichens as a source of phosphate-solubilizing bacteria. Extremophiles, 2021, 25, 181-191.	0.9	6
96	Hydrogen and organic acid production from dark fermentation of sugarcane vinasse without buffers in mesophilic and thermophilic conditions. Journal of Chemical Technology and Biotechnology, 2022, 97, 1585-1596.	1.6	6
97	Draft Genome Sequence of the Biosurfactant-Producing Bacterium Gordonia amicalis Strain CCMA-559, Isolated from Petroleum-Impacted Sediment. Genome Announcements, 2013, 1, .	0.8	5
98	Genome Sequence of Bacillus safensis CFA06, Isolated from Biodegraded Petroleum in Brazil. Genome Announcements, 2014, 2, .	0.8	5
99	Enzymatic potential of heterotrophic bacteria from a neutral copper mine drainage. Brazilian Journal of Microbiology, 2016, 47, 846-852.	0.8	5
100	The Challenge of Making Wastewater Treatment Plants Composed by Anaerobic Reactors Capable of Removing Nitrogen. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	5
101	Cold-adapted chitinases from Antarctic bacteria: Taxonomic assessment and enzyme production optimization. Biocatalysis and Agricultural Biotechnology, 2021, 34, 102029.	1.5	5
102	Pharmaceutical biotechnological potential of filamentous fungi isolated from textile industry. Archives of Microbiology, 2021, 203, 3933-3944.	1.0	4
103	Effect of biostimulation and bioaugmentation on hydrocarbon degradation and detoxification of diesel-contaminated soil: a microcosm study. Journal of Microbiology, 2021, 59, 634-643.	1.3	4
104	Taxonomic Diversity and Biodegradation Potential of Bacteria Isolated from Oil Reservoirs of an Offshore Southern Brazilian Basin. Journal of Petroleum & Environmental Biotechnology, 2013, 03, .	0.3	4
105	Functional and genetic characterization of hydrocarbon biodegrader and exopolymer-producing clones from a petroleum reservoir metagenomic library. Environmental Technology (United Kingdom), 2017, 38, 1139-1150.	1.2	3
106	Undecane production by cold-adapted bacteria from Antarctica. Extremophiles, 2020, 24, 863-873.	0.9	3
107	Antarctic organisms as a source of antimicrobial compounds: a patent review. Anais Da Academia Brasileira De Ciencias, 2022, 94, e20210840.	0.3	3
108	Interactive analysis of biosurfactants in fruit-waste fermentation samples using BioSurfDB and MEGAN. Scientific Reports, 2022, 12, 7769.	1.6	3

#	Article	IF	CITATIONS
109	Slurry Phase Biological Treatment of Latosol Contaminated with Phthalates, Adipate, and Alcohols. Journal of Environmental Engineering, ASCE, 2015, 141, 04014046.	0.7	2
110	Microbes and Petroleum Bioremediation. , 2018, , 97-123.		2
111	Antimicrobial, antiparasitic and antiproliferative effects of the extract of Bacillus safensis SG-32 isolated from a Brazilian oil reservoir. African Journal of Microbiology Research, 2018, 12, 897-907.	0.4	2
112	Classification and Identification of Petroleum Microorganisms by MALDI-TOF Mass Spectrometry. Journal of the Brazilian Chemical Society, 2015, , .	0.6	2
113	New Insights into Controlling Homoacetogenesis in the Co-digestion of Coffee Waste: Effect of Operational Conditions and Characterization of Microbial Communities. Applied Biochemistry and Biotechnology, 2021, , 1.	1.4	2
114	Chromosome numbers and karyotypes ofCatasetumspecies (Orchidaceae). Plant Biosystems, 2014, 148, 499-507.	0.8	1
115	Technological Prospecting: Mapping Patents on L-asparaginases from Extremophilic Microorganisms. Recent Patents on Biotechnology, 2021, 15, .	0.4	1
116	Diversity of Hydrocarbon-Related Catabolic Genes in Oil Samples from Potiguar Basin (Rn, Brazil). Journal of Petroleum & Environmental Biotechnology, 2013, 04, .	0.3	1
117	Potential for resistance to freezing by non-virulent bacteria isolated from Antarctica. Anais Da Academia Brasileira De Ciencias, 2022, 94, e20210459.	0.3	1
118	Evaluation of anaerobic and anoxic reactors installed in serial to treat fish tank effluent. Revista Ambiente & Ãgua, 2021, 16, 1.	0.1	0
119	Fibrinolytic enzymes from extremophilic microorganisms in the development of new thrombolytic therapies: Technological Prospecting. Recent Patents on Biotechnology, 2021, 15, .	0.4	0
120	Antarctic environments as a source of bacterial and fungal therapeutic enzymes. Anais Da Academia Brasileira De Ciencias, 2022, 94, e20210452.	0.3	0